基于KPLS的TE过程故障检测

文章介绍了如何使用核函数处理非线性工业系统数据,将其转换为线性可处理的形式,然后通过KPLS方法预测质量指标。通过T2/SPE统计量进行故障检测,展示了实际的预测和故障检测应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

非线性普遍存在于工业系统中,这里用核函数来处理原始数据,使得原始数据近似为线性数据结构。再通过偏最小二乘法进行质量指标的预测,T2/SPE统计量来检测系统故障。

数据

链接:https://pan.baidu.com/s/1yHgZRqy6yyk9wsm6igqUSw 
提取码:odsz

核函数

本代码使用高斯核函数:

function K = gaussian_kernel(X, Y, sigma)
    % X: 第一个数据集 (行表示样本,列表示特征)
    % Y: 第二个数据集
    % sigma: 高斯核的宽度参数
    
    % 获取数据集的尺寸
    nX = size(X, 1);  % X 中的样本数
    nY = size(Y, 1);  % Y 中的样本数
    
    % 计算 X 和 Y 之间的欧几里得距离的平方
    % 这里使用矩阵运算来加速计算
    XX = sum(X.^2, 2);  % X 每个样本的平方和
    YY = sum(Y.^2, 2);  % Y 每个样本的平方和
    
    % 使用矩阵操作计算欧几里得距离的平方
    D = XX + YY' - 2 * (X * Y');  % 欧几里得距离的平方矩阵
    
    % 计算高斯核矩阵
    K = exp(-D / (2 * sigma^2));
end

T2控制限

function T2_limit = calculateT2Limit(n, p, alpha)
    % 计算 T^2 控制限
    % 输入:
    %   n - 样本数
    %   p - 主元数
    %   alpha - 置信水平,通常是 0.05
  
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值