机器学习:【14】批标准化

标准化

也叫做归一化,一般是将数据映射到指定范围,用于去除不同维度数据的量纲以及量纲单位。

可以让机器学习模型看到不同样本之间更加相似。

常见的数据标准化形式:标准化(均值为0,方差为1)和归一化(取值在0-1之间)。

批标准化(Batch Normalization)

和普通数据标准化类似。

不仅在数据输入时进行标准化,而且在每次变换后都考虑数据标准化。

主要解决问题:梯度消失,梯度爆炸。

批标准化的好处:

  • 具有正则化的效果
  • 提高模型的泛化能力
  • 允许更高的学习速率从而加速收敛
  • 批标准化有助于梯度传播,因此允许更深的网络。对于有些特别深的网络,只有包含多个BatchNormalization层才能进行训练。

 批标准化的实现过程【不太理解,留个坑】

  1. 求每一个训练批次数据的均值
  2. 求每一个训练批次数据的方差
  3. 数据进行标准化
  4. 训练参数γ,β
  5. 输出y通过γ和β线性变换的到原来的数值

在训练的正向传播中,不会改变当前输出,只记录下γ和β。

在反向传播的时候,根据求得的γ与β通过链式求导方式,求出学习速率以至改变权值。

感觉有点像正态分布的标准化处理。

批标准化的预测过程

预测阶段的使用的均值和方差,是来自训练集的。训练时会记录下每个batch的均值、方差,在预测时要求整个训练样本的均值、方差的期望值,作为预测时进行BN的均值和方差。

批标准化的使用位置

training:Python布尔值,指示图层应在训练模式还是在推理模式下。

training=True 该图层将使用当前批输入的均值、方差对输入进行标准化。

training=False 该层将使用在训练期间学习的移动统计数据的均值、方差来标准化输入。

#本代码基于tensorflow2.0
#只写一段举个例子

model.add(tf.keras.layers.Dense(256))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Activation('relu'))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alex-YiWang

不要打赏,想要一个赞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值