题目给出一个数组nums,数组中包含一些正整数,问能够将这个数组分成两个子集,使得这两个子集相等。首先一上来的想法是将数列中所有的数和求出,然后看数组中能不能将其中的某些数组成总和的一半。这里需要用到动态规划的思想。用dp[i][j]来表示数组从0到i范围内能否表示数字j。我们用size函数可以得到数组n,通过求合再除以2可以得到目标target。然后我们就能创建dp数组如下:
vector<vector <int>>(n,vector<int>(target + 1, 0)) //target + 1防止数组越界
首先通过思考,我们可以先得到dp数组中以下两点的值:
- 只要不选取任何数组,我们就可以组成0,因此dp[i][0] = true;
- 当i = 0 时,只有正整数nums[0]可以被选取。因此dp[0][nums[0] = true;
然后,通过推导,我们可以得到以下状态转移方程:
最终我们返回答案dp[n][target]即可。
代码如下:
class Solution {
public:
bool canPartition(vector<int>& nums) {
sort(nums.begin(),nums.end());
int n = nums.size();
if(n < 2) return false;
int sum = 0;
for(int i = 0; i < n; ++i)
{
sum += nums[i];
}
if(sum % 2 != 0) return false;
int target = sum / 2;
vector<vector<int>> dp(n, vector<int>(target + 1, 0));
for (int i = 0; i < n; i++) {
dp[i][0] = true;
}
dp[0][nums[0]] = true;
for (int i = 1; i < n; i++) {
int num = nums[i];
for (int j = 1; j <= target; j++) {
if (j >= num) {
dp[i][j] = dp[i - 1][j] | dp[i - 1][j - num];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[n - 1][target];
}
};