- 博客(8)
- 收藏
- 关注
原创 圆上任选三点组成三角形,这个三角形是锐角、钝角和直角三角形的概率分别是多少?
想到一个挺直观的解法,大家讨论一下:看看上面的图,先画一个圆随便选一个点固定做第一个点,然后再随便选一个点做第二个点,画出这两个点直径对面的两个点 A 和 B ,按照图上分析,第三个点落在黑色的地方都是钝角,落在白色的地方是锐角,落在两个红点上是直角。因为第一个点是固定的,所以 A 点是固定的,我们来考虑B点的移动,B 点在 A 的左边和在 A 点的右边是对称的,我们只考虑 B 点从 A 点运动到第一个点的过程,白色区域的‘面积’应该是从 0 到一个半圆的'面积',B点上方的黑色区域是从一.
2020-05-26 18:59:58 4488 2
原创 Gradient Boosting 和 AdaBoost 的推导
最近看到集成学习的部分,觉得推导有点难,稍微写一写,主要参考李宏毅老师的深度学习2019课程和周志华老师的《机器学习》,这里只关注Gradient Boosting 和 AdaBoost 的推导,理清一下思路。Gradient Boosting 本身不是一个固定的算法,非常抽象,叫这个名字的原因个人觉得只是用了梯度下降的思想去解释提升这件事情,我们一步一步将整个框架搭建起来。首先,集成学习需要训...
2019-06-08 16:02:27 621
原创 离散数学当,仅当,当且仅当
每次看到有当,仅当就觉得很别扭,综合了一些博主的看法,自己推了推,把它写下来记住。首先是蕴含式 p->q,意思是如果有p成立,那么q也成立,也就是说p的范围比较大,连p都成立了,q一定会成立。比如说如果一个三角形是等边三角形,那么这个三角形是一个等腰三角形。这个容易理解,我们把(如果,那么)换成(当,)也是成立的:当一个三角形是等边三角形,这个三角形是一个等腰三角形。然后来看等价的变...
2019-03-17 03:30:14 21302 3
原创 探究 python import机制、module、package与名字空间
在开始之前,先了解一个内置函数dir(),它可以帮助我们分析一些内部的东西,dir()的描述是:dir(): 函数不带参数时,返回当前范围内的变量、方法和定义的类型列表;带参数时,返回参数的属性、方法列表。如果参数包含方法__dir__(),该方法将被调用。如果参数不包含__dir__(),该方法将最大限度地收集参数信息。简单来说,不带参数时,会返回当前名字空间的内容(通常是locals名字空间)...
2018-05-25 02:08:11 1932
原创 深入理解 python 实例方法、静态方法、类方法
最近在看python源码解析,这里整理一下python关于类机制中关于实例方法、静态方法、类方法的内容,这篇文章不会涉及python源代码,而是从源码的角度进行简要的解析,以求对不同方法的定义和调用过程有清晰的了解。首先看看我们的研究对象,简单的包含了类的三种方法,调用的话分别输出一句话,大家先记下来这个类:下面观察python是如何创建一个类的。python虚拟机执行字节码,是以名字空间(作用域...
2018-05-15 22:48:33 649
原创 基变换与线性变换梳理
关于线性代数当中的基变换和线性变换这一块,个人觉得特别繁杂,看起来简单,但是推导起来有点混乱,于是写下这篇博客记录一下初次学习的笔记和一些理解。本文参考麻省理工Gilbert Strang的线性代数公开课和戴华老师的《矩阵论》所写,理解有误的地方请大家指出。 学习线性代数可以从很多个地方入手,比如说同济版的《线性代数》从行列式入手(个人觉得很难接受);Mit公开课上的以矩阵的4个子空...
2018-03-10 19:38:35 8250 2
原创 关于《算法》上的红黑树的理解和简单实现(C代码)
关于红黑树的资料网上有很多,写这篇博客主要是记录一下自己的一些理解,也提供给大家参考。本文参考Sedgewick的《算法》所写,主要是2-3查找树到红黑树的过渡,有误的地方请大家指出。关于红黑树的定义,《算法》和《算法导论》有些不同,这篇文章的理解和实现是针对《算法》中的定义的,如果需要看《算法导论》的实现的朋友可以参考其它资料。《算法导论》对红黑树的描述大概是这样的:(1)每个结点或是红色,或是...
2018-02-08 22:35:23 340
原创 cs231n assignment1 关于svm_loss_vectorized中代码的梯度部分
个人觉得svm和softmax的梯度部分是这份作业的难点,参考了一些代码觉得还是难以理解,网上似乎也没有相关的解释,所以想把自己的想法贴出来,提供一个参考。 首先贴上参考的代码: def svm_loss_vectorized(W, X, y, reg): """ Structured SVM loss function, ve
2018-01-28 08:05:46 4437 9
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人