Jupyter notebook如何加载torch环境

默认你已经安装了anaconda 和 pytorch 环境。

1,必须要以管理员身份打开 Anaconda prompt终端,

2,进入pytorch环境中:

conda activate pytorch_39

image.png

3,安装必要插件:
(1)conda install nb_conda
(2)conda install ipykernel

4,在Anaconda prompt 中输入下面指令进行启动:

jupyte notebook

image.png

在新建文件这里,你就可以看到基于torch的核可以调用。
image.png

参考:

【anaconda装了pytorch,但是jupyter一直显示No module named ‘torch‘】
https://blog.51cto.com/u_15440206/4666445

【jupyter notebook加载conda 虚拟环境下的 torch和tensorflow】
https://blog.csdn.net/duohuanxi/article/details/121635848

### 解决方案 为了确保能够在 Jupyter Notebook 中成功导入并使用 PyTorch,建议按照以下方法操作: #### 方法一:在现有环境安装 PyTorch 并使其可用於 Jupyter Notebook 对于已经存在的 Python 虚拟环境,可以通过 pip 或者 conda 安装 PyTorch 库。然而,仅仅这样做可能不足以让 Jupyter Notebook 认识到新的库。因此,在确认命令行环境下 `import torch` 成功之后,还需要验证 Jupyter 是否也能够识别该包。 如果发现 Jupyter Notebook 无法找到已安装Torch 模块,则应该尝试直接在 Jupyter 的终端里执行相应的安装指令来解决问题[^1]。 ```bash !pip install torch torchvision torchaudio ``` 这种方法适用于那些不想切换内核或创建额外环境的情况。 #### 方法二:为特定版本的 PyTorch 创建独立 Conda 环境并与 Jupyter 集成 另一种更推荐的方式是专门为所需版本的 PyTorch 构建一个新的 Anaconda 环境,并将其注册给 Jupyter 使用。这不仅能避免不同项目之间的依赖冲突,还能简化管理流程。 具体步骤如下所示: 1. **创建新环境** 利用 anaconda prompt 来建立一个带有指定配置的新环境,比如这里选择了较稳定的 PyTorch 版本组合(如 v1.7.1),并且指定了 CUDA 工具链版本以匹配 GPU 加速需求。 ```bash conda create --name pytorch_env python=3.8 ``` 2. **激活新建环境安装必要的组件** 接下来要做的就是启动这个刚刚创建出来的环境,并在里面完成对 PyTorch 及其相关工具集的部署工作。 ```bash conda activate pytorch_env conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch ``` 3. **使当前环境中的解释器成为 Jupyter Kernel 的一部分** 这一步骤是为了让 Jupyter 能够访问我们刚才设置好的自定义开发环境里的资源。通过安装 `ipykernel` 和关联至目标环境实现这一点。 ```bash conda install ipykernel python -m ipykernel install --user --name=pytorch_env --display-name "Python (PyTorch)" ``` 4. **重启 Jupyter Notebook 并选择合适的 Kernel** 关闭现有的 Jupyter 实例再重新开启它;此时应当能在界面上看到名为 “Python (PyTorch)” 的选项卡可供选用作为默认计算引擎。一旦选定此 Kernel 后就可以正常加载 PyTorch 功能了[^2]。 5. **测试 GPU 支持情况** 当一切准备就绪后,可以在 notebook 单元格里面编写一小段代码用来检测是否启用了硬件加速特性。 ```python import torch print(torch.cuda.is_available()) ``` 如果返回 True 表明可以利用显卡来进行高效运算;反之则意味着仅限于 CPU 处理模式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值