YOLOv1
关于yolo v1本质上是anchor free的思考
参考;攻克目标检测难点秘籍六,释放Anchor的Anchor-Free算法-CSDN博客
回顾一下物体检测算法,在发展的初始阶段是没有Anchor这个概念的,例如Fast RCNN使用随机搜索(Selective Search)的方法提取感兴趣区域,虽然共享了卷积,但耗时严重,正是Faster RCNN引入了Anchor作为先验框,才将实时的物体检测变为可能,达到了检测的第一个高峰,其中Anchor可以说是居功至伟。
当前主流的基于Anchor的检测算法中,对于二阶的算法,第一阶段RPN会对Anchor进行有效的筛选,生成更有效、精准的Proposal,送入第二个阶段,最终得到预测的边框。相比之下,一阶的算法相当于把固定的Anchor当做了Proposal,通过高效的特征与正、负样本的控制,直接预测出了物体。(Faster R-CNN:引入了区域提议网络(Region Proposal Network, RPN),)
随着检测性能的提升,Anchor的弊端也渐渐地暴露了出来ÿ