Leetcode C++《热题 Hot 100-56》300. 最长上升子序列

Leetcode C++《热题 Hot 100-56》300. 最长上升子序列

1.题目

给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。

说明:

可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。

进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2.思路

  • dp[i] 为考虑前 i 个元素,以第 i个数字结尾的最长上升子序列的长度,nums[i] 必须被选取。如果dp[i+1] = dp[i] +1 , 那么nums[i+1]一定要大于nums[i]
  • 时间复杂度n*n,空间复杂度n

3.代码

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        //一直上升子序列
        //dp[i] 为考虑前 i 个元素,以第 i个数字结尾的最长上升子序列的长度,nums[i] 必须被选取。
        //如果dp[i+1] = dp[i] +1 , 那么nums[i+1]一定要大于nums[i]
        int res = 0;
        int* dp = new int[nums.size()];
        for (int i = 0; i < nums.size(); i++) {
            dp[i] = 1;
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j])
                    dp[i] = max(dp[i], dp[j]+1);
            }
            res = max(res,dp[i]);
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值