Leetcode C++《热题 Hot 100-56》300. 最长上升子序列
1.题目
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明:
可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2.思路
- dp[i] 为考虑前 i 个元素,以第 i个数字结尾的最长上升子序列的长度,nums[i] 必须被选取。如果dp[i+1] = dp[i] +1 , 那么nums[i+1]一定要大于nums[i]
- 时间复杂度n*n,空间复杂度n
3.代码
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
//一直上升子序列
//dp[i] 为考虑前 i 个元素,以第 i个数字结尾的最长上升子序列的长度,nums[i] 必须被选取。
//如果dp[i+1] = dp[i] +1 , 那么nums[i+1]一定要大于nums[i]
int res = 0;
int* dp = new int[nums.size()];
for (int i = 0; i < nums.size(); i++) {
dp[i] = 1;
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j])
dp[i] = max(dp[i], dp[j]+1);
}
res = max(res,dp[i]);
}
return res;
}
};