第三版-Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow+PDF书本+各章节代码

Sebastian RaschkaVahid Mirjalili编著,是一本关于使用Python进行机器学习和深度学习的实用指南。该书全面覆盖了机器学习和深度学习的基础知识、算法和实际应用,适合初学者和有一定经验的开发者。

目录

  1. 绪论

    介绍机器学习的基本概念、假设空间、归纳偏好、发展历程和应用现状。
  2. 模型评估与选择

    讨论模型的经验误差与过拟合、评估方法、性能度量、比较检验、偏差与方差。
  3. 线性模型

    介绍线性回归、对数几率回归、线性判别分析、多分类学习和类别不平衡问题。
  4. 决策树

    讨论决策树的基本流程、划分选择、剪枝处理以及多变量决策树。
  5. 神经网络

    介绍神经元模型、感知机、多层网络、误差逆传播算法和深度学习。
  6. 支持向量机

    讨论间隔与支持向量、对偶问题、核函数、软间隔与正则化、支持向量回归。
  7. 贝叶斯分类器

    介绍贝叶斯决策论、极大似然估计、朴素贝叶斯分类器和贝叶斯网络。
  8. 集成学习

    讨论个体与集成、Boosting、Bagging与随机森林、结合策略。
  9. 聚类

    介绍聚类任务、性能度量、距离计算、原型聚类、密度聚类和层次聚类。
  10. 降维与度量学习

    讨论k近邻学习、低维嵌入、主成分分析、流形学习和度量学习。
  11. 特征选择与稀疏学习

    介绍子集搜索与评价、过滤式选择、包裹式选择和嵌入式选择与L1正则化。
  12. 计算学

Through exposure to the news and social media, you are probably aware of the fact that machine learning has become one of the most exciting technologies of our time and age. Large companies, such as Google, Facebook, Apple, Amazon, and IBM, heavily invest in machine learning research and applications for good reasons. While it may seem that machine learning has become the buzzword of our time and age, it is certainly not a fad. This exciting field opens the way to new possibilities and has become indispensable to our daily lives. This is evident in talking to the voice assistant on our smartphones, recommending the right product for our customers, preventing credit card fraud, filtering out spam from our email inboxes, detecting and diagnosing medical diseases, the list goes on and on. If you want to become a machine learning practitioner, a better problem solver, or maybe even consider a career in machine learning research, then this book is for you. However, for a novice, the theoretical concepts behind machine learning can be quite overwhelming. Many practical books have been published in recent years that will help you get started in machine learning by implementing powerful learning algorithms. Getting exposed to practical code examples and working through example applications of machine learning are a great way to dive into this field. Concrete examples help illustrate the broader concepts by putting the learned material directly into action. However, remember that with great power comes great responsibility! In addition to offering a hands-on experience with machine learning using the Python programming languages and Python-based machine learning libraries, this book introduces the mathematical concepts behind machine learning algorithms, which is essential for using machine learning successfully. Thus, this book is different from a purely practical book; it is a book that discusses the necessary details regarding machine learning concepts and offers intuitive yet informative explanations of how machine learning algorithms work, how to use them, and most importantly, how to avoid the most common pitfalls. Currently, if you type "machine learning" as a search term in Google Scholar, it returns an overwhelmingly large number of publications—1,800,000. Of course, we cannot discuss the nitty-gritty of all the different algorithms and applications that have emerged in the last 60 years. However, in this book, we will embark on an exciting journey that covers all the essential topics and concepts to give you a head start in this field. If you find that your thirst for knowledge is not satisfied, this book references many useful resources that can be used to follow up on the essential breakthroughs in this field. If you have already studied machine learning theory in detail, this book will show you how to put your knowledge into practice. If you have used machine learning techniques before and want to gain more insight into how machine learning actually works, this book is for you. Don't worry if you are completely new to the machine learning field; you have even more reason to be excited. Here is a promise that machine learning will change the way you think about the problems you want to solve and will show you how to tackle them by unlocking the power of data. Before we dive deeper into the machine learning field, let's answer your most important question, "Why Python?" The answer is simple: it is powerful yet very accessible. Python has become the most popular programming language for data science because it allows us to forget about the tedious parts of programming and offers us an environment where we can quickly jot down our ideas and put concepts directly into action. We, the authors, can truly say that the study of machine learning has made us better scientists, thinkers, and problem solvers. In this book, we want to share this knowledge with you. Knowledge is gained by learning. The key is our enthusiasm, and the real mastery of skills can only be achieved by practice. The road ahead may be bumpy on occasions and some topics may be more challenging than others, but we hope that you will embrace this opportunity and focus on the reward. Remember that we are on this journey together, and throughout this book, we will add many powerful techniques to your arsenal that will help us solve even the toughest problems the data-driven way.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值