动态规划最重要的是要找到一个情况的所有子情况,处理完所有子情况后把结果通过一定的方式转移得到这个情况的答案。
那么很多时候我们会遇到或者可以构造出这样一个图,每个点是一种情况,每条边代表着这条边的终点是起点的一个子情况。
首先这个图是有向的,如果他里面没有环,我们称之为有向无环图(DAG),我们可以在这个图上通过状态转移的到最后的答案。
接下来我们考虑如何进行动态规划的状态转移。
其实,想到一个合理的转移顺序不太容易,不妨尝试用记忆化搜索的方法来做,因为是无环的,每条路径一定会到达一个终点,不会陷入无尽的环中,可以放心大胆的进行记忆化搜索。
以一个求DAG的最长路为例,dfs函数的参数是目前到达的点u,考虑他指向的所有点,求得每个点开始的最长路加上从u到它的距离,取最大就是u开始的最长路了,这里使用了记忆化搜索,dis数组初始化为-1,之后将从u开始的最长路的长度存在dis[u]里
我们依然可以用for循环遍历所有点为起点,因为使用了记忆化搜索,所以一旦搜索过就会直接返回你会结果,不会进行多于重复的搜索
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAX_N = 1005;
const int MAX_M = 10005;
struct edge {
int v, next;
int len;
} E[