算法题解:寻找有向无环图中的最长路径(JAVA+动态规划)

本文介绍了如何使用JAVA和动态规划解决寻找有向无环图(DAG)中最长路径的问题。文章指出,在一个具有n个顶点和m个边的有向图中,任务是找到最长的有向路径,并给出了一条长度为3的示例路径。文章还提到了算法的实现和程序的运行结果。
摘要由CSDN通过智能技术生成

寻找有向无环图中的最长路径(JAVA+动态规划)

给出了一个具有n个顶点和m个边的有向图G。任务是找出图中最长有向路径的长度。

注:有向路径的长度是指路径中的边数。

例如:下图中有4个顶点,5条边。

最长的有向路径的长度为 3。

从1到3,到2,到4。


算法实现

package com.bean.algorithm.graph;

import java.util.ArrayList;

public class LongestPathDirectedAcyclicGraph {
	
	int vertices;
	ArrayList<Integer> edge[];

	LongestPathDirectedAcyclicGraph(int vertices) {
		this.vertices = vertices;
		edge = new ArrayList[vertices + 1];
		for (int i = 0; i <= vertices; i++) {
			edge[i] = new ArrayList<>();
		}
	}

	void addEdge(int a, int b) {
		edge[a].add(b);
	}

	void dfs(int node, ArrayList<Integer> adj[], int dp[], boolean visited[]) {
		// 标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值