理论
拓扑排序(只适用于AOV网(有向无环图))
运用 : 事务先后(非唯一)
拓扑排序思路:
- 选择一个入度为 0 的点 并输出
- 从AOV网中删除此顶点以及此顶点为起点的所有关联边
- 重复上述两步,直到不存在入度为0的顶点为止
- 如果书粗糙顶点数小于AOV网中的顶点数,则输出“有回路信息”,否则输出的顶点序列就是一种拓扑排序
算法实现:
- 数据结构: indgr[i] : 顶点i的入度;
stack[] : 栈 - 初始化 : top = 0 (栈顶指针置零)
- 将初始化状态所有的入度为0的顶点压栈
- I = 0 (计数器)
- while( !q.empty() ) ( top > 0 )
i : 栈顶的顶点 v 出栈 ; top - 1; 输出 v; i++;
ii : for ( v 的每一个后继顶点 u )
1. indgr[u]–; u 的入度减一
2. if indgr == 0 顶点 u 入栈
AOV 网判定
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<vector>
#define N 10001
using namespace std;
int n,m;
int in[N];//节点入度
vector<int> G[N];//G[i]表示i节点所指向的所有其他点
bool judgeTopsort()//判断该图是否可拓扑排序
{
stack<int> S;
int cnt=0;//记录可拆解的点数目
for(int i=1;i<=n;i++)//枚举编号从1到n的点
if(in[i]==0)//入度为0,入栈
S.push(i);
while(!S.empty()) {
int x=S.top();//取栈顶元素
S.pop();
cnt++;//可拆点数+1
for(int i=0;i<G[x].size();i++){
int y=G[x][i];
in[y]--;//入度减一
if(in[y]==0)//入度为0,出栈
S.push(y);
}
}
if(cnt==n)//AOV网点数等于图的点数,不存在环,可进行拓扑排序
return true;
else//AOV网点数等于图的点数,存在环,不可进行拓扑排序
return false;
}
int main()
{
while(scanf("%d%d",&n,&m)==2&&n)
{
memset(in,0,sizeof(in));
for(int i=1;i<=n;i++)
G[i].clear();
while(m--) {
int x,y;
scanf("%d%d",&x,&y);
G[x].push_back(y);
in[y]++;
}
printf("%s\n",judgeTopsort()?"YES":"NO");
}
return 0;
}
任意一条拓扑排序
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<vector>
#define N 10001
using namespace std;
int n,m;
int in[N];//节点入度
int path[N];//存储路径
vector<int> G[N];//G[i]表示i节点所指向的所有其他点
void Topsort()//拓扑排序
{
stack<int> S;
int cnt=0;//记录可拆解的点数目
for(int i=1;i<=n;i++)//枚举编号从1到n的点
if(in[i]==0)//入度为0,入栈
S.push(i);
while(!S.empty()) {
int x=S.top();//取栈顶元素
S.pop();
path[++cnt]=x;//存储可拆点
for(int i=0;i<G[x].size();i++){
int y=G[x][i];
in[y]--;//入度减一
if(in[y]==0)//入度为0,出栈
S.push(y);
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)==2&&n)
{
memset(in,0,sizeof(in));
for(int i=1;i<=n;i++)
G[i].clear();
while(m--) {
int x,y;
scanf("%d%d",&x,&y);
G[x].push_back(y);
in[y]++;
}
Topsort();
for(int i=1;i<=n;i++)
printf("%d ",path[i]);
printf("\n");
}
return 0;
}
字典序最小的一条路径
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#define N 10001
using namespace std;
int n,m;
int in[N];//节点入度
int path[N];//存储路径
vector<int> G[N];//G[i]表示i节点所指向的所有其他点
void Topsort()//拓扑排序
{
priority_queue< int,vector<int>,greater<int> > Q;//最小值先出列
int cnt=0;//记录可拆解的点数目
for(int i=1;i<=n;i++)//枚举编号从1到n的点
if(in[i]==0)//入度为0,入列
Q.push(i);
while(!Q.empty()) {
int x=Q.top();//队列首元素
Q.pop();
path[++cnt]=x;//存储可拆点
for(int i=0;i<G[x].size();i++){
int y=G[x][i];
in[y]--;//入度减一
if(in[y]==0)//入度为0,出列
Q.push(y);
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF&&n)
{
memset(in,0,sizeof(in));
for(int i=1;i<=n;i++)
G[i].clear();
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
G[x].push_back(y);
in[y]++;
}
Topsort();
for(int i=1;i<=n;i++)
printf("%d ",path[i]);
printf("\n");
}
return 0;
}
【例题】
1.拓扑排序的判定
Legal or Not(HDU-3342):
Triangle LOVE(HDU-4324):
2.输出拓扑排序结果
Genealogical tree(POJ-2367)(输出任一条拓扑排序结果):
确定比赛名次(HDU-1285)(输出字典序最小的拓扑排序结果):
Following Orders(POJ-1270)(按字典序输出所有拓扑排序结果):
3.拓扑排序的应用
烦人的幻灯片(信息奥赛一本通-T1395)(拓扑排序思想)
家谱树(信息奥赛一本通-T1351)(构造拓扑排序):
奖金(信息奥赛一本通-T1352)(构造拓扑排序)
Cow Traffic(POJ-3272)(双向拓扑排序):
Ponds(HDU-5438)(拓扑排序删点+dfs):
病毒(信息奥赛一本通-T1396)(给出字典序,找出拓扑排序关系):
处女座的比赛资格(2019牛客寒假算法基础集训营 Day3-B)(拓扑排序求最短路):
Sorting It All Out(POJ-1094)(拓扑排序+差分约束系统):
Labeling Balls(POJ-3687)(拓扑排序+逆向思维):
原文链接:https://blog.csdn.net/u011815404/article/details/83715830