介绍
标签:并查集
1579. 保证图可完全遍历
难度 困难
1579. 保证图可完全遍历
https://leetcode-cn.com/problems/remove-max-number-of-edges-to-keep-graph-fully-traversable/
并查集模板
在正式开始做题之前,首先提供一个并查集类,常用的方法基本上就只有union和find操作,其他的方法按照需求自己写。
要是不清楚并查集是什么可以参考其他博客,这个概念很容易理解。
// 并查集模板,来自力扣官方
class UnionFind {
int[] parent;
int[] size;
int n;
// 当前连通分量数目,很多题目要求就是对并查集数量统计
int setCount;
//初始化并查集
public UnionFind(int n) {
this.n = n;
this.setCount = n;
this.parent = new int[n];
this.size = new int[n];
Arrays.fill(size, 1);
for (int i = 0; i < n; ++i) {
parent[i] = i;
}
}
// 返回x的并查集根结点,并且顺便递归更新
public int findset(int x) {
return parent[x] == x ? x : (parent[x] = findset(parent[x]));
}
//基于x,y合并两个并查集
public boolean unite(int x, int y) {
x = findset(x);
y = findset(y);
if (x == y) {
return false;
}
if (size[x] < size[y]) {
int temp = x;
x = y;
y = temp;
}
parent[y] = x;
size[x] += size[y];
--setCount;
return true;
}
// 判断x,y是否在同一个并查集下
public boolean connected(int x, int y) {
x = findset(x);
y = findset(y);
return x == y;
}
}
题目
Alice 和 Bob 共有一个无向图,其中包含 n 个节点和 3 种类型的边:
- 类型 1:只能由 Alice 遍历。
- 类型 2:只能由 Bob 遍历。
- 类型 3:Alice 和 Bob 都可以遍历。
给你一个数组 edges ,其中 edges[i] = [typei, ui, vi] 表示节点 ui 和 vi 之间存在类型为 typei 的双向边。请你在保证图仍能够被 Alice和 Bob 完全遍历的前提下,找出可以删除的最大边数。如果从任何节点开始,Alice 和 Bob 都可以到达所有其他节点,则认为图是可以完全遍历的。
返回可以删除的最大边数,如果 Alice 和 Bob 无法完全遍历图,则返回 -1 。
示例 1:
输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,3],[1,2,4],[1,1,2],[2,3,4]]
输出:2
解释:如果删除 [1,1,2] 和 [1,1,3] 这两条边,Alice 和 Bob 仍然可以完全遍历这个图。再删除任何其他的边都无法保证图可以完全遍历。所以可以删除的最大边数是 2 。
示例 2:
输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,4],[2,1,4]]
输出:0
解释:注意,删除任何一条边都会使 Alice 和 Bob 无法完全遍历这个图。
示例 3:
输入:n = 4, edges = [[3,2,3],[1,1,2],[2,3,4]]
输出:-1
解释:在当前图中,Alice 无法从其他节点到达节点 4 。类似地,Bob 也不能达到节点 1 。因此,图无法完全遍历。
提示:
1 <= n <= 10^5
1 <= edges.length <= min(10^5, 3 * n * (n-1) / 2)
edges[i].length == 3
1 <= edges[i][0] <= 3
1 <= edges[i][1] < edges[i][2] <= n
- 所有元组
(typei, ui, vi)
互不相同
解题思路
分析题目意图
题目给出了一个无向图,连接图的边有三种,第一种是Alice边,只能给Alice用;第二种是Bob边,只能给Bob用;第三种是公共边,无论是Alice还是Bob都可以使用。
要求是去掉多余的边,使得Alice和Bob都可以以最少的边走遍图中每个点。
面对这类的题目,首先是想到DFS、最小生成树或者并查集之类的东西。其中最不费脑子的就是并查集,因此采用并查集的方法来解决
分析解题方法
首先假设只有一个人,并不存在第二个人,那么并查集的构建与处理将会很简单,之前还做过类似的中等题。但是实际上在加一个人也不会提升多少难度。
因为有三种类型的边,由于type3也就是公共边,承载这两个人的通行需要,那么应该优先考虑公共边,然后再考虑个人边。
于是选择遍历两遍边数组,第一次遍历用全部的公共边来构建并查集,并且将多余的公共边去除;而个人边将构建两个根结点数组来存储,也就是分别对Alice和Bob构建两个不同的并查集体系。
借Hao Kun Yang的图:
解题步骤
- 针对公共边构建并查集,并去除重复边
- 构建两个用于存储根结点的数组,分别对Alice和Bob构建两个不同的并查集
- 再次遍历边,分别形成Alice和Bob的并查集
- 遍历每个点判断Alice或者Bob是否能够经过每个点
反正核心思想就是先处理一遍公共边的,然后再考虑个人的边,也就是意味着要构建两个并查集
代码
class Solution {
public int maxNumEdgesToRemove(int n, int[][] edges) {
int[] p = new int[n+1];
for(int i=0; i<n+1; i++){
p[i] = i;
}
int edgeLen = edges.length;
int ans = 0;
//预处理,去除全部type3的边,并且将type3连接到的点全部加入到同一个并查集
for (int i=0; i<edgeLen; i++){
//不是type3就直接continue
if (edges[i][0]!=3) continue;
//删除多余的先
if (isUnion(p, edges[i][1], edges[i][2])){
ans++;
}
//合并
else{
union(p, edges[i][1], edges[i][2]);
}
}
//拷贝一份现有的并查集,并将p作为Alice对应的并查集,将pBob作为Bob对应的并查集
int[] pBob = new int[n+1];
for(int i=0; i<n+1; i++){
pBob[i] = p[i];
}
//再次遍历数组,分别统计Alice和Bob对应的并查集
for (int i=0; i<edgeLen; i++){
if (edges[i][0]==1){
if(isUnion (p, edges[i][1], edges[i][2])){
ans++;
}else{
union (p, edges[i][1], edges[i][2]);
}
}
else if (edges[i][0]==2){
if(isUnion (pBob, edges[i][1], edges[i][2])){
ans++;
}else{
union (pBob, edges[i][1], edges[i][2]);
}
}
}
//判断对于Alice来说是否能遍历到每个点
int pRoot = find (p, 1);
for(int i=2; i<n+1;i++){
if (find (p, i)!=pRoot) return -1;
}
//判断对于Bob来说是否能遍历到每个点
int pBobRoot = find (pBob, 1);
for(int i=2; i<n+1; i++){
if (find (pBob, i)!=pBobRoot) return -1;
}
return ans;
}
//并查集合并
private void union(int[] p, int a, int b){
int pa = find (p ,a);
int pb = find (p, b);
if(pa != pb){
p[pa] = pb;
}
}
//返回是否已经在同一个并查集
private boolean isUnion(int[] p, int a, int b){
return find(p, a) == find(p, b);
}
//返回根结点,并更新并查集
private int find(int[] p, int x){
while (x != p[x]){
p[x] = p[p[x]];
x = p[x];
}
return p[x];
}
}