算法学习Day2——C之二分查找与动态规划

二分查找:第一个错误版本

题目:

 

思路:划清左右边界,算出分界线, 在某条分界线上,如果这条分界线为true,则分界线左边都是true;那么把左边界设为中线部分,因为第一个错误的地方肯定在于中线的右侧,区间为[mid,right]。如果这条分界线为false,那么错误肯定位于左边,那么把right设置为mid,第一个错误的区间肯定位于[left,mid]

这种方式不断地缩小查询的空间:

  • 时间复杂度O(log n),n为给定长度/数量

  • 空间复杂度O(1),只需要保持常数空间

代码:

// The API isBadVersion is defined for you.
// bool isBadVersion(int version);这个函数返回的是 是否错误 true就是错了

int firstBadVersion(int n) {
    int left=1,right=n;

    //确保区间是在1~n
    while(left<right)
    {
        //划分中线
        int mid = left + (right - left)/2;

        if(isBadVersion(mid))
        {
            //中线已经是false了,说明false的元素位于中线的左边
            right = mid;
        }
        else
        {
            //那就是前面的版本都是对的,那就把区间化为[mid+1,right]
            left = mid+1;
        }
    }
    //此刻的left=right就是第一个错误的地方
    return left;
}

完全平方数:发现这是一个数学问题

从数学角度:

四平方定理:任何一个正整数都可以表示成不超过四个整数的平方之和。

那先从动态规划定理开始吧:

这个题目有两个条件是平方和又是最小数。其实翻译过来就是,完全平方数为物品(无限使用),凑个正整数n就是背包,那么要凑满这个背包最少需要多少个物品?

完完全全就是背包问题了,那么就是涉及动态规划了。

需要注意的是:

  • 背包容量target和物品nums的类型可能是数,也可能是字符串。

  • target可能题目已经给出(如上题),也有可能是需要我们从题目的信息中挖掘出来。

  • 背包问题的分类:

    0/1背包问题:每个元素最多选取一次。

    完全背包问题:每个元素都可以重复选择。

    组合背包问题:背包中的物品要考虑顺序。

    分组背包问题:不止一个背包,需要遍历每个背包。

  • 背包问题的要求:

    最值:要求最大值or最小值

    存在问题:是否存在...满足...

    组合问题:求所有满足...的排列组合

先从动态规划解决这个问题:

  • 我们可以依据题目的要求写出状态表达式:f[i],每个下标表示需要多少个数的平方可以表示这个整数i。

  • 这些数肯定是落在[1,根号n]中,那么只需要每次遍历回去f[i-j*j]即可以实现找到这个数之前的平方数。状态方程如下:我的理解的+1是为了保证下一个数比上一个数多一个1 * 1,或是这个数可以自己开完全平方,加一补回去,因为f[0]=0。

 

 

  • f[0]=0,保证j=根号i。

代码:

int numSquares(int n){
    //用于存储从0到这个数的所有数字的完全平方数
    int f[n+1];
    //用于实现数字本身就可以开根号用
    f[0] = 0;
    for(int i=1;i<=n;i++)
    {
        //定义为int类型的最大值的数字,方便比出最小值
        int minn = INT_MAX;
        //递归操作,算出是否存在f[i-j*j],如果有那么值就为上一个f值再+1,如果算出来为f[0],则说明他本身可以自行开根号
        for(int j=1;j*j<=i;j++)
        {
            minn = fmin(minn,f[i-j*j]);
        }
        //本身自行可以开根号 or 补上1*1
        f[i] = minn + 1;
    }
    //返回对应每个数字的完全平方数
    return f[n];
}

 

从数学角度解决这个问题:

四平方和定理:四平方和定理_百度百科

同时四平方和定里包含了一个更强的理论:

 那按照图中的思路我们可以写出:

//判断是否为1的情况,即完全平方数
bool isPerfectSquare(int x)
{
	int y = sqrt(x);
	return y*y == x;
}
//判断是否能表示为4^k*(8m+7)
bool checkAnswer4(int x)
{
    //判断是不是4的几次方
    while(x%4==0)
    {
        x/=4;
    }
    //判断是否存在有(8m+7)这个项,如果有则返回1
    return x%8==7;
}
int numSquares(int n)
{
    if(isPerfectSquare(n))
    {
        return 1;
    }
    
    if(checkAnswer4(n))
    {
        return 4;
    }
    
    for(int i=1;i*i<n;i++)
    {
        //除了1*1是否还存在别的数字可以直接开方
        int j = n - i * i;
        //如果没有 那就是存在3个了
        if(isPerfectSquare(j))
        {
            return 2;
        }
    }
    return 3;
}

害,怪自己学艺不精了T T。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郑烯烃快去学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值