不讲解论文中的理论知识,只汇总源代码实现中的问题
链接概括
1.文章:(CVPR 2020) Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement
2. 链接: paper.
3. 链接: code.
4. 其他博主复现链接: link.
存在的几个主要问题
1.检查电脑是否含有GPU,不是GPU环境需要将代码改为CPU环境下
2. 源代码中没有数据集
3. 代码中路径问题,路径不对将导致无法加载数据
3.需要按照要求设置文件夹
4. 由于版本不同,代码运行中出现的警告影响代码运行
检查电脑是否含有GPU:将代码改为CPU环境下运行
论文中的代码是GPU环境下的,并且是在每一句需要用到GPU的代码下注释的,所以需要将所有含有该语令的改为CPU
具体改法:
将代码中".cuda()"删去,或者将其改为“.cpu()”
下面仅仅是部分示例:其中前面带“#”为源代码
// Myloss.py
# kernel_left = torch.FloatTensor( [[0,0,0],[-1,1,0],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0)
# kernel_right = torch.FloatTensor( [[0,0,0],[0,1,-1],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0)
# kernel_up = torch.FloatTensor( [[0,-1,0],[0,1, 0 ],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0)
# kernel_down = torch.FloatTensor( [[0,0,0],[0,1, 0],[0,-1,0]]).cuda().unsqueeze(0).unsqueeze(0)
kernel_left = torch.FloatTensor([[