暗光增强——Zero-DCE网络推理测试(详细图文教程)

在这里插入图片描述

💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《图像增强》
📝《模型优化》
📝《模型实战部署》
📝《图像配准融合》
📝《数据集》
📝《高效助手》


在这里插入图片描述

一、Zero-DCE方法

Zero-DCE(Zero-Reference Deep Curve Estimation)是一种用于低光照增强的网络。

1.1 网络优点

无需参考数据:Zero-DCE 不需要任何配对或非配对的数据进行训练,这避免了过拟合的风险。

轻量级网络:Zero-DCE 使用了一个轻量级的网络(DCE-Net)来预测一个像素级的,高阶的曲线。

实时运行:Zero-DCE 的推理速度极快,甚至可以在手机上实时运行。

优秀的增强效果:Zero-DCE 的提亮效果优于其他方法,训练速度和推理速度更是冠绝一方。

1.2 网络适用场景

低光照图像增强:Zero-DCE 是为低光照图像增强设计的,因此它在这个场景下表现得非常好。

实时图像处理:由于 Zero-DCE 的推理速度非常快,它可以用于需要实时图像处理的应用,如手机摄像头、实时视频流等。

数据少的情况:由于 Zero-DCE 不需要任何配对或非配对的数据进行训练,所以它适合于数据少的情况。

1.3 网络不适用场景

高光照图像增强:Zero-DCE 主要是为低光照图像增强设计的,因此它可能不适合高光照图像增强的场景。

需要精确色彩再现的应用:虽然 Zero-DCE 能够提高图像的亮度,但它可能会改变图像的色彩。因此,对于需要精确色彩再现的应用,如医学图像处理、艺术作品修复等,Zero-DCE 可能不是最佳选择。

二、源码包

这里给出官网地址和我自己的源码包,我在官网基础上没修改多少代码。

官网下载:Zero-DCE

我提供的源码包获取方法文章末扫码到公众号中回复关键字:暗光增强Zero-DCE。获取下载链接。

论文地址:论文

下载解压后的样子如下:

在这里插入图片描述

官网提供的模型权重在snapshots路径下:

在这里插入图片描述

三、测试

在运行脚本前要先在测试集文件夹同级目录下的result文件夹中创建和测试集文件夹名一样的空文件夹,用与存放测试结果。如下:

在这里插入图片描述

然后在test_data文件夹中的各个文件夹中放入自己低分辨率的图片即可运行脚本,如下:

在这里插入图片描述

测试脚本我分了两个,一个是GPU推理,一个是CPU推理,如下,都加有推理测试时间的代码:
在这里插入图片描述

四、测试结果

测试结果自动保存到data\resul文件夹下。

下面是部分测试场景,左图为暗光图,右图为Zero-DCE模型增强后的结果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、推理速度

我自己电脑处理器为:12th Gen Intel® Core™ i7-12700H 2.30 GHz,显卡为Nvidia GeForce RTX 3050。

测试图像的分辨率640*480左右。

GPU平均推理速度为:2ms/fps。

在这里插入图片描述

CPU平均推理速度为:2980ms/fps。

在这里插入图片描述

六、总结

以上就是Zero-DCE网络推理测试的过程,注意该网络的适用情况。后续还会出其它暗光增强算法,从多角度对比不同算法处理的结果。

感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖

关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉研坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值