暗光增强——Zero-DCE网络推理测试(详细图文教程)

一、Zero-DCE方法

Zero-DCE(Zero-Reference Deep Curve Estimation)是一种用于低光照增强的网络。

1.1 网络优点

无需参考数据:Zero-DCE 不需要任何配对或非配对的数据进行训练,这避免了过拟合的风险。

轻量级网络:Zero-DCE 使用了一个轻量级的网络(DCE-Net)来预测一个像素级的,高阶的曲线。

实时运行:Zero-DCE 的推理速度极快,甚至可以在手机上实时运行。

优秀的增强效果:Zero-DCE 的提亮效果优于其他方法,训练速度和推理速度更是冠绝一方。

1.2 网络适用场景

低光照图像增强:Zero-DCE 是为低光照图像增强设计的,因此它在这个场景下表现得非常好。

实时图像处理:由于 Zero-DCE 的推理速度非常快,它可以用于需要实时图像处理的应用,如手机摄像头、实时视频流等。

数据少的情况:由于 Zero-DCE 不需要任何配对或非配对的数据进行训练,所以它适合于数据少的情况。

1.3 网络不适用场景

高光照图像增强:Zero-DCE 主要是为低光照图像增强设计的,因此它可能不适合高光照图像增强的场景。

需要精确色彩再现的应用:虽然 Zero-DCE 能够提高图像的亮度,但它可能会改变图像的色彩。因此,对于需要精确色彩再现的应用,如医学图像处理、艺术作品修复等,Zero-DCE 可能不是最佳选择。

二、源码包

这里给出官网地址和我自己的源码包,我在官网基础上没修改多少代码。

官网下载:Zero-DCE

我提供的源码包获取方法文章末扫码到公众号中回复关键字:暗光增强Zero-DCE。获取下载链接。

论文地址:论文

下载解压后的样子如下:

在这里插入图片描述

官网提供的模型权重在snapshots路径下:

在这里插入图片描述

三、测试

在运行脚本前要先在测试集文件夹同级目录下的result文件夹中创建和测试集文件夹名一样的空文件夹,用与存放测试结果。如下:

在这里插入图片描述

然后在test_data文件夹中的各个文件夹中放入自己低分辨率的图片即可运行脚本,如下:

在这里插入图片描述

测试脚本我分了两个,一个是GPU推理,一个是CPU推理,如下,都加有推理测试时间的代码:
在这里插入图片描述

四、测试结果

测试结果自动保存到data\resul文件夹下。

下面是部分测试场景,左图为暗光图,右图为Zero-DCE模型增强后的结果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、推理速度

我自己电脑处理器为:12th Gen Intel® Core™ i7-12700H 2.30 GHz,显卡为Nvidia GeForce RTX 3050。

测试图像的分辨率640*480左右。

GPU平均推理速度为:2ms/fps。

在这里插入图片描述

CPU平均推理速度为:2980ms/fps。

在这里插入图片描述

六、总结

以上就是Zero-DCE网络推理测试的过程,注意该网络的适用情况。后续还会出其它暗光增强算法,从多角度对比不同算法处理的结果。

总结不易,多多支持,谢谢!

Zero-DCE (Zero-Reference Deep Curve Estimation) 是一种图像增强算法,用于改善低质量图像的视觉效果。它通过学习图像直方图的变换函数来实现图像增强,而无需参考图像。关于Zero-DCE的改进,目前有一些研究工作正在进行。 一种改进的方法是将Zero-DCE与其他图像增强算法结合使用,以进一步提高增强效果。例如,可以将Zero-DCE与自适应直方图均衡化(AHE)或双边滤波器等算法结合使用,以在不同场景下获得更好的结果。这种组合方法可以充分利用各种算法的优点,从而实现更好的图像增强效果。 另一种改进是通过引入新的损失函数或优化目标来改善Zero-DCE的训练过程。例如,可以将感知损失函数或结构相似性指数(SSIM)纳入到训练过程中,以使生成的增强图像在视觉上更接近于原始图像。这样可以进一步提高增强图像的质量和逼真度。 此外,一些研究者还尝试通过改进网络结构或调整超参数来改进Zero-DCE算法。例如,使用更深层的神经网络架构或增加网络的宽度可以提高算法的表达能力,从而获得更好的增强效果。此外,调整网络的学习率、批大小和训练迭代次数等超参数也可能对算法的性能产生影响。 需要注意的是,Zero-DCE算法的改进目前还处于研究阶段,尚未被广泛应用于实际场景。因此,对于不同的应用需求,选择合适的图像增强算法和技术,或许能够取得更好的效果。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉研坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值