《几何原本》命题I.5
等腰三角形的两底角相等,将腰延长,与底边形成的两个补角亦相等。
设
△
A
B
C
\triangle ABC
△ABC 是等腰三角形,
A
B
=
A
C
AB=AC
AB=AC
延长
A
B
,
B
C
AB,BC
AB,BC
在
A
B
AB
AB 的延长线上任取点
D
D
D,在
A
C
AC
AC 的延长线上取点
E
E
E,使得
A
D
=
A
E
AD=AE
AD=AE
则
△
A
C
D
≅
△
A
B
E
\triangle ACD \cong \triangle ABE
△ACD≅△ABE,
C
D
=
B
E
,
∠
A
D
C
=
∠
A
E
B
CD=BE,\angle ADC=\angle AEB
CD=BE,∠ADC=∠AEB
又
B
D
=
A
D
−
A
B
=
A
E
−
A
C
=
C
E
BD=AD-AB=AE-AC=CE
BD=AD−AB=AE−AC=CE
则
△
B
F
C
≅
△
C
G
B
\triangle BFC \cong \triangle CGB
△BFC≅△CGB
则
∠
F
B
C
=
∠
G
C
B
,
∠
A
B
C
=
∠
A
C
B
\angle FBC=\angle GCB,\angle ABC=\angle ACB
∠FBC=∠GCB,∠ABC=∠ACB