Rating 计算公式

Rating ⁡ \operatorname{Rating} Rating 计算公式一般有多种,具体公式取决于使用情境和数据结构。

常用的环形排序算法的Rating计算公式是:
Rating ⁡ = R + K × ( P − E ) \operatorname{Rating} = R + K\times(P -E) Rating=R+K×(PE)其中, R R R 是用户的当前 Rating ⁡ \operatorname{Rating} Rating P P P 是用户在比赛中取得的得分(或排名), E E E 是用户的期望得分(或期望排名), K K K 是调整参数。

期望得分可以用以下公式计算:
E = ( 1 / ( 1 + 1 0 ( ( O − R ) / 400 ) ) ) ∗ S E=(1/(1+10^{((O-R)/400)}))*S E=(1/(1+10((OR)/400)))S其中, S S S 是当前场次的总分数(或票数), O O O 是指用户在比赛开始之前的 Rating ⁡ \operatorname{Rating} Rating

在此基础上,还有其他一些特殊情况下的计算公式,例如:

  • 对于新用户的 Rating ⁡ \operatorname{Rating} Rating 计算公式: Rating ⁡ = 1200 + K ∗ ( P − E ) \operatorname{Rating} =1200 + K *(P -E) Rating=1200+K(PE)其中 K K K 通常为 32 32 32
  • 对于团队比赛中的 Rating ⁡ \operatorname{Rating} Rating 计算公式: Rating ⁡ = ( T 1 + R 2 + R 3 + …   ) / N \operatorname{Rating} =(T_1+R_2+ R_3 +\dots)/N Rating=(T1+R2+R3+)/N其中 T 1 T_1 T1 是自己团队的总得分(或总排名), R 2 , R 3 R_2,R_3 R2,R3 等是其
    他团队成员的当前 Rating ⁡ \operatorname{Rating} Rating N N N 是团队成员总数。
  • 对于基于多属性评分的 Rating ⁡ \operatorname{Rating} Rating 计算公式:
    Rating ⁡ = a × A + b × B + c × C + … \operatorname{Rating} =a\times A+ b \times B+c\times C+ \dots Rating=a×A+b×B+c×C+其中 A , B , C A,B,C A,B,C 等是不同属性的得分, a , b , c a,b,c a,b,c 等是对应属性的权重。

值得注意的是,不同的 Rating ⁡ \operatorname{Rating} Rating 计算公式会对结果产生不同的影响,因此选择适合自己的公式非常重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值