Rating\operatorname{Rating}Rating 计算公式一般有多种,具体公式取决于使用情境和数据结构。
常用的环形排序算法的Rating计算公式是:
Rating=R+K×(P−E)\operatorname{Rating} = R + K\times(P -E)Rating=R+K×(P−E)其中,RRR 是用户的当前 Rating\operatorname{Rating}Rating,PPP 是用户在比赛中取得的得分(或排名),EEE 是用户的期望得分(或期望排名),KKK 是调整参数。
期望得分可以用以下公式计算:
E=(1/(1+10((O−R)/400)))∗SE=(1/(1+10^{((O-R)/400)}))*SE=(1/(1+10((O−R)/400)))∗S其中,SSS 是当前场次的总分数(或票数),OOO 是指用户在比赛开始之前的 Rating\operatorname{Rating}Rating。
在此基础上,还有其他一些特殊情况下的计算公式,例如:
- 对于新用户的 Rating\operatorname{Rating}Rating 计算公式:Rating=1200+K∗(P−E)\operatorname{Rating} =1200 + K *(P -E)Rating=1200+K∗(P−E)其中 KKK 通常为 323232。
- 对于团队比赛中的 Rating\operatorname{Rating}Rating 计算公式:Rating=(T1+R2+R3+… )/N\operatorname{Rating} =(T_1+R_2+ R_3
+\dots)/NRating=(T1+R2+R3+…)/N其中 T1T_1T1 是自己团队的总得分(或总排名),R2,R3R_2,R_3R2,R3 等是其
他团队成员的当前 Rating\operatorname{Rating}Rating,NNN 是团队成员总数。 - 对于基于多属性评分的 Rating\operatorname{Rating}Rating 计算公式:
Rating=a×A+b×B+c×C+…\operatorname{Rating} =a\times A+ b \times B+c\times C+ \dotsRating=a×A+b×B+c×C+…其中 A,B,CA,B,CA,B,C 等是不同属性的得分,a,b,ca,b,ca,b,c 等是对应属性的权重。
值得注意的是,不同的 Rating\operatorname{Rating}Rating 计算公式会对结果产生不同的影响,因此选择适合自己的公式非常重要。