某头部股份制银行基于 Data Fabric 的敏捷数据准备创新实践

本文讲述了某头部股份制银行如何通过与Aloudata合作,利用DataFabric技术解决海量数据带来的报表查询性能问题,构建了基于逻辑数据平台的敏捷数据准备解决方案,显著提升了数据获取时效、业务自助能力,降低了存储和计算成本,推动了业务的数字化转型和数据驱动决策能力的提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【背景】

随着数字化转型的持续深入,某头部股份制银行把“依托数据洞察提升管理和营销的精准度、实现经营与服务的精细化与个性化”作为参与下一阶段数字化业务竞争的核动力。经过多年的探索,该头部股份制银行数字化技术与业务场景的融合逐渐进入了深水区。

一、源起:敏捷 BI 在各业务条线广泛推广

该行内部已建成一套以数据可视化、自助分析、数据接入等核心组件为一体的数据分析平台,通过赋能行内数据产品建设,服务各业务条线的日常用数。

其中,面向数据分析师的自助用数服务是核心能力,包含了自助制作业务报告、自助探索分析、数据轻加工、增强分析、办公用图表等主要场景。随着该行支撑的数据产品自助化场景逐步拓展,越来越多的用数环节由业务用户自己完成。目前,该行数据平台已经支撑行内批发、零售、财会、运营、风险等条线的数据产品建设,月服务用户超 数 万人。

二、挑战:海量数据规模下的报表查询性能问题

随着数字化转型的持续深入,该行的数智化建设进入数据规模爆炸式增长的“深水区”。据统计,其总行湖仓的整体规模已经超过数十 PB,而数据服务场景从企业高管的“固定分析”需求向“数智化运营”转变,业务运营过程中大量的“微决策”场景高度依赖及时、精准的数据分析。以零售业务为例,营销圈人、人群洞察、活动效果评估等复杂多变的敏捷运营需求大量涌现。

海量数据分析性能的问题成为一大挑战,特别是在报告查询和自助分析响应效率方面。其次,数据需求的交付效率也存在问题。在总分机构的模式下,分行作为业务的最前线,常常出现数据生产和消费的时间差异。业务需求的灵活性给数据模型带来了空间和时间复杂度的挑战。IT 交付的数据模型,无论是宽表、Cube 还是明细数据,在海量数据规模下,都难以满足高效查询的需求。即使在某个时间点能够调整到最佳状态,未来的业务需求仍难以快速响应。

基于上述背景,该行联合 Aloudata 进行创新,通过 Aloudata AIR 逻辑数据平台构建了基于 Data Fabric 理念的敏捷数据准备解决方案,大幅提升了数据准备效率和高并发下的请求响应效率,实现了全行数据的零复制实时汇聚与访问、VIP 业务报告百分百性能保障和 90% 以上报告请求秒级打开率。

【方案介绍】

海量业务数据分散在多个引擎是各项业务快速创新和增长的必然结果。国内头部金融企业和大型互联网公司传统上都是采用数据仓库方案,通过物理方式实现数据的汇总和加工,进而为分析场景提供数据准备。面向不同用数场景的多次物理搬运与 ETL 工程不仅成本高昂,还会导致重复导数、数据安全、数据时效性差、数据灵活性和使用效率较低等问题。

Data Fabric 是一种国际上较为先进的数据管理架构思想,包含了数据虚拟化、主动元数据在内的一系列技术,其核心理念是通过优化跨源异构数据的发现与访问,将可信数据从所有数据源中以灵活且业务可理解的方式交付给所有相关数据消费者,让数据消费者自助服务和高效协作,实现极致敏捷的数据交付,同时通过主动、智能、持续的数据治理,让数据架构持续健康。

基于 Alou

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值