最大熵模型以及拉格朗日对偶性

本文介绍了最大熵模型,它是基于最大熵原理的多类分类方法。通过提取有用信息和定义特征函数来构建模型,并利用拉格朗日对偶性解决约束最优化问题。讨论了对偶问题与原始问题的关系,以及如何通过求解对偶问题来找到最大熵模型的解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

最大熵模型(maximu entropy model)是多类分类方法,属于判别模型。

最大熵原理

最大熵模型是由最大熵原理推导实现。最大熵原理是概率模型学习的一个准则,它认为在满足所有约束条件下,把不确定部分当作等可能的概率模型中,熵最大的模型是最好的模型。

不确定部分等可能是因为我们没有更多的信息,对于不确定的地方我们不清楚不了解,那么公平起见,都是等可能性的吧。
举个例子:给你一个骰子,没有任何其他信息我们认为每个面的概率都是等可能的1/6。

模型

首先提取能拟合模型且对选择模型有用信息(考虑模型应该满足的条件)。
为了能学习到一个条件概率分布的分类模型,我们首先需要计算P(X,Y)经验分布(从抽样样本中得到的信息)和P(X)边缘分布。(这是一个有用的信息)在这里插入图片描述
观察完了样本得到经验分布以及边缘分布,我们可以定义一个特征函数:(这又是一个有用的信息)
在这里插入图片描述

为什么我们需要这个特征函数?
因为它描述了一个x与y之间的事实,这个事实是我们形成约束条件的重要信息,有n个特征函数就会有n个约束条件。

在这个经验分布中,f(x,y)的期望是多少?
在这里插入图片描述

为什么我们需要这个期望?
期望是随机变量的平均值,这里的随机变量是f(x,y)这个事实ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值