本系列将围绕数学分析考研进行更新,进行基础阶段(25年1月—25年6月)的知识短暂性汇总与整理,选用教材为华东师范大学编著的《数学分析》(第五版),主要将每一章节的知识进行简单汇总,用更加通俗的语言与形式进行知识的串联,同时也会整理一些重点的题目以供参考,题目的来源主要聚焦在华东师范大学编著的第五版《数学分析》以及陈纪修老师的第三版《数学分析》
数学分析研究的基本对象是定义在实数集上的函数,所以应先理解实数集的相关概念与函数的定义。于是,第一章便围绕这两个基本概念进行展开,其主要还是在进行基本概念的导入,本章共4节。
课本简单概括
1.1实数
这一小节主要介绍实数,围绕实数及其性质展开,同时讲解绝对值与不等式,要注意实数的稠密性与阿基米德性在证明题中的运用,同时注意三角不等式的运用。
1.2数集·确界原理
这一小节先进行概念的介绍,区间、邻域以及其所衍生的相关概念,而本小节最为重要的便是确界原理,掌握由上下界到上下确界的证明思路,确界原理的证明需着重掌握。
1.3函数概念
这一小节围绕函数进行简单介绍,主要包括定义、表示方法、四则运算、复合函数以及反函数和初等函数,要着重理解反函数,尤其是正弦函数、余弦函数的反函数的存在性与范围相关,同时注意复合函数定义域问题。
1.4具有某些特性的函数
这一小节介绍了几类比较特殊的函数:有界函数、单调函数、奇偶函数与周期函数,注意运用定义证明函数的单调性即可。
小结
总的来说,这一章的重点是有关确界原理证明的掌握以及函数的相关性质。