前言
连续函数是数学分析中着重分析的一类函数,而关于对连续函数在某一点的判断,简而言之,便是判断在该点处的极限值是否等于该点的函数值,若等于,函数便在这点连续。而对于不连续的点,我们称之为不连续点,或者间断点。本文将着重介绍间断点的定义以及他的分类,进而通过具体题目分析间断点的判断。
间断点的定义
设函数 f f f在某 U ° ( x 0 ) U°(x_0) U°(x0)上有定义.若 f f f在 x 0 x_0 x0无定义,或者 f f f在 x 0 x_0 x0处有定义而不连续,则称点 x 0 x_0 x0为函数 f f f的间断点或者不连续点.
- 其实根据上面的定义,不难看出,在分析间断点的过程中,需要分析两个维度:①在该点处函数的极限是否存在?②在该点处函数的极限值是否等于函数值?
也是基于此,我们对于间断点做出如下分类。
间断点的分类
根据在 x 0 x_0 x0处的极限值是否存在,间断点被分为第一类间断点与第二类间断点.
第一类间断点
- 第一类间断点指的指的是那些在 x 0 x_0 x0处存在极限的点
可去间断点
若 lim x → x 0 f ( x ) = A \lim_{x\rightarrow x_0}f(x)=A limx→x0f(x)=A,而 f f f在 x 0 x_0 x0处无定义,或有定义但是 f ( x 0 ) ≠ A f(x_0)\neq A f(x0)=A,则称点 x 0 x_0 x0为 f f f的可去间断点.
- 可去间断点可以被视为在 x 0 x_0 x0处有极限但与函数值不等,因此该点在分析过程中可以被“忽视”,进而进行函数延拓使得函数的连续性质更加便于分析.
跳跃间断点
若函数 f f f在点 x 0 x_0 x0处的左右极限均存在,但是 lim x → x 0 + f ( x ) ≠ lim x → x 0 − f ( x ) \lim_{x\rightarrow x_{0}^{+}}f(x)\neq \lim_{x\rightarrow x_{0}^{-}}f(x) limx→x0+f(x)=limx→x0−f(x),则称点 x 0 x_0 x0为 f f f的跳跃间断点.
- 跳跃间断点可以被视为在 x 0 x_0 x0处有极限但左右极限不等,在函数图象中显示为在某点 x 0 x_0 x0处左右两边存在着一定的差距,因此直观的称之为跳跃间断点.
第二类间断点
- 第二类间断点指的指的是那些在 x 0 x_0 x0处至少有一侧极限不存在的点.
举例子而言,比如 y = 1 x y=\frac{1}{x} y=x1在 x 0 = 0 x_0=0 x0=0处极限不存在,这种间断点被称之为无穷间断点;又比如 y = sin 1 x y=\sin\frac{1}{x} y=sinx1在 x 0 = 0 x_0=0 x0=0处极限不定,这种间断点被称之为振荡间断点.
具体间断点的判断
下面通过一些题目分析具体间断点的判断
例题1:
y
=
x
2
−
1
x
3
−
3
x
+
2
y=\frac{x^2-1}{x^3-3x+2}
y=x3−3x+2x2−1
解:
y
=
x
2
−
1
x
3
−
3
x
+
2
=
(
x
−
1
)
(
x
+
1
)
(
x
−
1
)
(
x
−
1
)
(
x
+
2
)
y=\frac{x^2-1}{x^3-3x+2}=\frac{(x-1)(x+1)}{(x-1)(x-1)(x+2)}
y=x3−3x+2x2−1=(x−1)(x−1)(x+2)(x−1)(x+1)
在该函数中,无定义的点为
x
=
1
x=1
x=1、
x
=
2
x=2
x=2,此在,原函数在这两点处的极限值均不存在,因此这两点均为第二类间断点。
例题2:
y
=
x
sin
x
y=\frac{x}{\sin{x}}
y=sinxx
解:该函数中无定义的点为
sin
x
=
0
\sin{x}=0
sinx=0的点,则不难解得
x
=
k
π
,
k
∈
Z
x=k\pi,k\in Z
x=kπ,k∈Z,且
lim
x
→
0
x
sin
x
=
1
\lim_{x\rightarrow 0}\frac{x}{\sin{x}}=1
limx→0sinxx=1,那么在
x
=
0
x=0
x=0时,该点为可去间断点,除此之外的点处极限值不存在,均为第二类间断点。
例题3:
y
=
1
x
n
e
−
1
x
2
y=\frac{1}{x^n}e^{-\frac{1}{x^2}}
y=xn1e−x21
解:在
x
=
0
x=0
x=0处,左右极限均存在且相等,均为0,但是函数在
x
=
0
x=0
x=0处无定义,因此
x
=
0
x=0
x=0为可去间断点。
例题4:
y
=
x
2
−
x
∣
x
∣
(
x
2
−
1
)
y=\frac{x^2-x}{|x|(x^2-1)}
y=∣x∣(x2−1)x2−x
解:
y
=
x
2
−
x
∣
x
∣
(
x
2
−
1
)
=
x
(
x
−
1
)
∣
x
∣
(
x
−
1
)
(
x
+
1
)
y=\frac{x^2-x}{|x|(x^2-1)}=\frac{x(x-1)}{|x|(x-1)(x+1)}
y=∣x∣(x2−1)x2−x=∣x∣(x−1)(x+1)x(x−1)
本题中也是分析令分母为0的点,对原函数进行化简之后,分析就变得容易了,不难得出如下结果:
x
=
0
x=0
x=0为跳跃间断点(左极限为-1,右极限为1);
x
=
1
x=1
x=1为可去间断点(极限为
1
2
\frac{1}{2}
21);
x
=
−
1
x=-1
x=−1为第二类间断点(极限不存在)。
小结
关于间断点的判断问题其实并不复杂,主要还是分析无定义处的函数情况进行分析,分析过程中一定要对间断点的类型足够的掌握,对于每一类别的概念足够清晰,解题过程中应足够严谨。