26考研|数学分析:重难突破—间断点的类型

前言

连续函数是数学分析中着重分析的一类函数,而关于对连续函数在某一点的判断,简而言之,便是判断在该点处的极限值是否等于该点的函数值,若等于,函数便在这点连续。而对于不连续的点,我们称之为不连续点,或者间断点。本文将着重介绍间断点的定义以及他的分类,进而通过具体题目分析间断点的判断。

间断点的定义

设函数 f f f在某 U ° ( x 0 ) U°(x_0) U°(x0)上有定义.若 f f f x 0 x_0 x0无定义,或者 f f f x 0 x_0 x0处有定义而不连续,则称点 x 0 x_0 x0为函数 f f f间断点或者不连续点.

  • 其实根据上面的定义,不难看出,在分析间断点的过程中,需要分析两个维度:①在该点处函数的极限是否存在?②在该点处函数的极限值是否等于函数值?

也是基于此,我们对于间断点做出如下分类。

间断点的分类

根据 x 0 x_0 x0处的极限值是否存在,间断点被分为第一类间断点与第二类间断点.

第一类间断点

  • 第一类间断点指的指的是那些 x 0 x_0 x0处存在极限的点

可去间断点

lim ⁡ x → x 0 f ( x ) = A \lim_{x\rightarrow x_0}f(x)=A limxx0f(x)=A,而 f f f x 0 x_0 x0无定义,或有定义但是 f ( x 0 ) ≠ A f(x_0)\neq A f(x0)=A,则称点 x 0 x_0 x0 f f f可去间断点.

  • 可去间断点可以被视为在 x 0 x_0 x0有极限但与函数值不等,因此该点在分析过程中可以被“忽视”,进而进行函数延拓使得函数的连续性质更加便于分析.

跳跃间断点

若函数 f f f在点 x 0 x_0 x0处的左右极限均存在,但是 lim ⁡ x → x 0 + f ( x ) ≠ lim ⁡ x → x 0 − f ( x ) \lim_{x\rightarrow x_{0}^{+}}f(x)\neq \lim_{x\rightarrow x_{0}^{-}}f(x) limxx0+f(x)=limxx0f(x),则称点 x 0 x_0 x0 f f f跳跃间断点.

  • 跳跃间断点可以被视为在 x 0 x_0 x0有极限但左右极限不等,在函数图象中显示为在某点 x 0 x_0 x0处左右两边存在着一定的差距,因此直观的称之为跳跃间断点.

第二类间断点

  • 第二类间断点指的指的是那些 x 0 x_0 x0处至少有一侧极限不存在的点.

举例子而言,比如 y = 1 x y=\frac{1}{x} y=x1 x 0 = 0 x_0=0 x0=0处极限不存在,这种间断点被称之为无穷间断点;又比如 y = sin ⁡ 1 x y=\sin\frac{1}{x} y=sinx1 x 0 = 0 x_0=0 x0=0处极限不定,这种间断点被称之为振荡间断点.

具体间断点的判断

下面通过一些题目分析具体间断点的判断
例题1 y = x 2 − 1 x 3 − 3 x + 2 y=\frac{x^2-1}{x^3-3x+2} y=x33x+2x21
y = x 2 − 1 x 3 − 3 x + 2 = ( x − 1 ) ( x + 1 ) ( x − 1 ) ( x − 1 ) ( x + 2 ) y=\frac{x^2-1}{x^3-3x+2}=\frac{(x-1)(x+1)}{(x-1)(x-1)(x+2)} y=x33x+2x21=(x1)(x1)(x+2)(x1)(x+1)
在该函数中,无定义的点为 x = 1 x=1 x=1 x = 2 x=2 x=2,此在,原函数在这两点处的极限值均不存在,因此这两点均为第二类间断点
例题2 y = x sin ⁡ x y=\frac{x}{\sin{x}} y=sinxx
:该函数中无定义的点为 sin ⁡ x = 0 \sin{x}=0 sinx=0的点,则不难解得 x = k π , k ∈ Z x=k\pi,k\in Z x=,kZ,且 lim ⁡ x → 0 x sin ⁡ x = 1 \lim_{x\rightarrow 0}\frac{x}{\sin{x}}=1 limx0sinxx=1,那么在 x = 0 x=0 x=0时,该点为可去间断点,除此之外的点处极限值不存在,均为第二类间断点
例题3 y = 1 x n e − 1 x 2 y=\frac{1}{x^n}e^{-\frac{1}{x^2}} y=xn1ex21
:在 x = 0 x=0 x=0处,左右极限均存在且相等,均为0,但是函数在 x = 0 x=0 x=0处无定义,因此 x = 0 x=0 x=0可去间断点
例题4 y = x 2 − x ∣ x ∣ ( x 2 − 1 ) y=\frac{x^2-x}{|x|(x^2-1)} y=x(x21)x2x
y = x 2 − x ∣ x ∣ ( x 2 − 1 ) = x ( x − 1 ) ∣ x ∣ ( x − 1 ) ( x + 1 ) y=\frac{x^2-x}{|x|(x^2-1)}=\frac{x(x-1)}{|x|(x-1)(x+1)} y=x(x21)x2x=x(x1)(x+1)x(x1)
本题中也是分析令分母为0的点,对原函数进行化简之后,分析就变得容易了,不难得出如下结果:
x = 0 x=0 x=0跳跃间断点(左极限为-1,右极限为1);
x = 1 x=1 x=1可去间断点(极限为 1 2 \frac{1}{2} 21);
x = − 1 x=-1 x=1第二类间断点(极限不存在)。

小结

关于间断点的判断问题其实并不复杂,主要还是分析无定义处的函数情况进行分析,分析过程中一定要对间断点的类型足够的掌握,对于每一类别的概念足够清晰,解题过程中应足够严谨。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值