第一类间断点
第一类间断点又称为可去间断点和跳跃间断点。这类间断点的特点是左右极限都存在,但可能不相等或与函数值不一致。
1. 可去间断点
-
定义:在某一点 ( x = c ),函数 ( f(x) ) 的左极限和右极限都存在且相等,但不等于函数在该点的值(如果函数在该点有定义)。
-
记忆方法:左右极限相同,但与函数值不同,可以通过重新定义函数在该点的值使其连续。
-
例题:
考虑函数
f ( x ) = x 2 − 1 x − 1 f(x) = \frac{x^2 - 1}{x - 1} f(x)=x−1x2−1
在 ( x = 1 ) 处的情况。-
计算左极限:
lim x → 1 − f ( x ) = lim x → 1 − ( x − 1 ) ( x + 1 ) x − 1 = lim x → 1 − ( x + 1 ) = 2 \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1^-} (x+1) = 2 x→1−limf(x)=x→1−limx−1(x−1)(x+1)=x→1−lim(x+1)=2 -
计算右极限:
l i m x → 1 + f ( x ) = lim x → 1 + ( x − 1 ) ( x + 1 ) x − 1 = lim x → 1 + ( x + 1 ) = 2 lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1^+} (x+1) = 2 limx→1+f(x)=x→1+limx−1(x−1)(x+1)=x→1+lim(x+1)=2 -
函数在 ( x = 1 ) 处的值:( f(1) ) 不存在(因为分母为零)
-
结论:左右极限存在且相等,但函数在 ( x = 1 ) 处没有定义,因此 ( x = 1 ) 是一个可去间断点。
-
2. 跳跃间断点
-
定义:在某一点 ( x = c ),函数 ( f(x) ) 的左极限和右极限都存在但不相等。
-
记忆方法:左右极限存在但不相等,函数在该点有一个“跳跃”。
-
例题:
考虑函数
f ( x ) = { x + 1 if x < 1 x − 1 if x ≥ 1 f(x) = \begin{cases} x + 1 & \text{if } x < 1 \\ x - 1 & \text{if } x \geq 1 \end{cases} f(x)={x+1x−1if x<1if x≥1
在 ( x = 1 ) 处的情况。-
计算左极限:
lim x → 1 − f ( x ) = lim x → 1 − ( x + 1 ) = 2 \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x + 1) = 2 x→1−limf(x)=x→1−lim(x+1)=2 -
计算右极限:
lim x → 1 + f ( x ) = lim x → 1 + ( x − 1 ) = 0 \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x - 1) = 0 x→1+limf(x)=x→1+lim(x−1)=0 -
函数在 ( x = 1 ) 处的值:( f(1) = 0 )
-
结论:左右极限存在但不相等,因此 ( x = 1 ) 是一个跳跃间断点。
-
第二类间断点
第二类间断点的特点是至少有一个单侧极限不存在(即为无穷大或振荡)。
1. 无穷间断点
-
定义:在某一点 ( x = c ),函数 ( f(x) ) 的左极限或右极限为无穷大。
-
记忆方法:函数在该点趋向于无穷大,图形上表现为垂直渐近线。
-
例题:
考虑函数
f ( x ) = 1 x f(x) = \frac{1}{x} f(x)=x1
在 ( x = 0 ) 处的情况。-
计算左极限:
lim x → 0 − f ( x ) = − ∞ \lim_{x \to 0^-} f(x) = -\infty x→0−limf(x)=−∞ -
计算右极限:
lim x → 0 + f ( x ) = + ∞ \lim_{x \to 0^+} f(x) = +\infty x→0+limf(x)=+∞ -
结论:左右极限都不存在(为无穷大),因此 ( x = 0 ) 是一个无穷间断点。
-
2. 振荡间断点
-
定义:在某一点 ( x = c ),函数 ( f(x) ) 的左极限或右极限不存在,且函数值在该点附近振荡。
-
记忆方法:函数在该点附近不断上下波动,没有趋于某个确定的值。
-
例题:
考虑函数
f ( x ) = sin ( 1 x ) 在 x = 0 f(x) = \sin\left(\frac{1}{x}\right) 在 x = 0 f(x)=sin(x1)在x=0
处的情况。-
计算左极限:
lim x → 0 − sin ( 1 x ) \lim_{x \to 0^-} \sin\left(\frac{1}{x}\right) x→0−limsin(x1)
不存在,因为函数值在 ([-1, 1]) 之间振荡。 -
计算右极限:
lim x → 0 + sin ( 1 x ) \lim_{x \to 0^+} \sin\left(\frac{1}{x}\right) x→0+limsin(x1)
也不存在,因为函数值在 ([-1, 1]) 之间振荡。 -
结论:左右极限都不存在且函数值振荡,因此 ( x = 0 ) 是一个振荡间断点。
-
总结
- 第一类间断点:
- 可去间断点:左右极限存在且相等,但与函数值不同。
- 跳跃间断点:左右极限存在但不相等。
- 第二类间断点:
- 无穷间断点:左右极限至少有一个为无穷大。
- 振荡间断点:左右极限至少有一个不存在且函数值振荡。