通俗易懂归纳间断点(含例子)

第一类间断点

第一类间断点又称为可去间断点和跳跃间断点。这类间断点的特点是左右极限都存在,但可能不相等或与函数值不一致。

1. 可去间断点
  • 定义:在某一点 ( x = c ),函数 ( f(x) ) 的左极限和右极限都存在且相等,但不等于函数在该点的值(如果函数在该点有定义)。

  • 记忆方法:左右极限相同,但与函数值不同,可以通过重新定义函数在该点的值使其连续。

  • 例题
    考虑函数
    f ( x ) = x 2 − 1 x − 1 f(x) = \frac{x^2 - 1}{x - 1} f(x)=x1x21
    在 ( x = 1 ) 处的情况。

    • 计算左极限:
      lim ⁡ x → 1 − f ( x ) = lim ⁡ x → 1 − ( x − 1 ) ( x + 1 ) x − 1 = lim ⁡ x → 1 − ( x + 1 ) = 2 \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1^-} (x+1) = 2 x1limf(x)=x1limx1(x1)(x+1)=x1lim(x+1)=2

    • 计算右极限:
      l i m x → 1 + f ( x ) = lim ⁡ x → 1 + ( x − 1 ) ( x + 1 ) x − 1 = lim ⁡ x → 1 + ( x + 1 ) = 2 lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1^+} (x+1) = 2 limx1+f(x)=x1+limx1(x1)(x+1)=x1+lim(x+1)=2

    • 函数在 ( x = 1 ) 处的值:( f(1) ) 不存在(因为分母为零)

    • 结论:左右极限存在且相等,但函数在 ( x = 1 ) 处没有定义,因此 ( x = 1 ) 是一个可去间断点。

2. 跳跃间断点
  • 定义:在某一点 ( x = c ),函数 ( f(x) ) 的左极限和右极限都存在但不相等。

  • 记忆方法:左右极限存在但不相等,函数在该点有一个“跳跃”。

  • 例题
    考虑函数
    f ( x ) = { x + 1 if  x < 1 x − 1 if  x ≥ 1 f(x) = \begin{cases} x + 1 & \text{if } x < 1 \\ x - 1 & \text{if } x \geq 1 \end{cases} f(x)={x+1x1if x<1if x1
    在 ( x = 1 ) 处的情况。

    • 计算左极限:
      lim ⁡ x → 1 − f ( x ) = lim ⁡ x → 1 − ( x + 1 ) = 2 \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x + 1) = 2 x1limf(x)=x1lim(x+1)=2

    • 计算右极限:
      lim ⁡ x → 1 + f ( x ) = lim ⁡ x → 1 + ( x − 1 ) = 0 \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x - 1) = 0 x1+limf(x)=x1+lim(x1)=0

    • 函数在 ( x = 1 ) 处的值:( f(1) = 0 )

    • 结论:左右极限存在但不相等,因此 ( x = 1 ) 是一个跳跃间断点。

第二类间断点

第二类间断点的特点是至少有一个单侧极限不存在(即为无穷大或振荡)。

1. 无穷间断点
  • 定义:在某一点 ( x = c ),函数 ( f(x) ) 的左极限或右极限为无穷大。

  • 记忆方法:函数在该点趋向于无穷大,图形上表现为垂直渐近线。

  • 例题
    考虑函数
    f ( x ) = 1 x f(x) = \frac{1}{x} f(x)=x1
    在 ( x = 0 ) 处的情况。

    • 计算左极限:
      lim ⁡ x → 0 − f ( x ) = − ∞ \lim_{x \to 0^-} f(x) = -\infty x0limf(x)=

    • 计算右极限:
      lim ⁡ x → 0 + f ( x ) = + ∞ \lim_{x \to 0^+} f(x) = +\infty x0+limf(x)=+

    • 结论:左右极限都不存在(为无穷大),因此 ( x = 0 ) 是一个无穷间断点。

2. 振荡间断点
  • 定义:在某一点 ( x = c ),函数 ( f(x) ) 的左极限或右极限不存在,且函数值在该点附近振荡。

  • 记忆方法:函数在该点附近不断上下波动,没有趋于某个确定的值。

  • 例题
    考虑函数
    f ( x ) = sin ⁡ ( 1 x ) 在 x = 0 f(x) = \sin\left(\frac{1}{x}\right) 在 x = 0 f(x)=sin(x1)x=0
    处的情况。

    • 计算左极限:
      lim ⁡ x → 0 − sin ⁡ ( 1 x ) \lim_{x \to 0^-} \sin\left(\frac{1}{x}\right) x0limsin(x1)
      不存在,因为函数值在 ([-1, 1]) 之间振荡。

    • 计算右极限:
      lim ⁡ x → 0 + sin ⁡ ( 1 x ) \lim_{x \to 0^+} \sin\left(\frac{1}{x}\right) x0+limsin(x1)
      也不存在,因为函数值在 ([-1, 1]) 之间振荡。

    • 结论:左右极限都不存在且函数值振荡,因此 ( x = 0 ) 是一个振荡间断点。

总结

  • 第一类间断点
    • 可去间断点:左右极限存在且相等,但与函数值不同。
    • 跳跃间断点:左右极限存在但不相等。
  • 第二类间断点
    • 无穷间断点:左右极限至少有一个为无穷大。
    • 振荡间断点:左右极限至少有一个不存在且函数值振荡。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值