于本章开始,一种新的计算被介绍。这一章主要围绕积分法——微分法的逆运算,这一板块进行展开。本章的重点其实很简单——计算,针对于不定积分的计算,各种类型、各种方法均会被介绍,在学习本章时候,一定要注意加强计算练习,熟练掌握每一种类型的计算方法与手段,学会处理不同类型的不定积分的计算。
课本简单概括
8.1不定积分概念与基本积分公式
本小节首先介绍了原函数与不定积分这两个概念,其实不定积分可以视为是一个集合,这个集合中包含了所有的原函数,所以在不定积分的计算中,一定要注意加入常数C。此外,本小节还介绍了基本积分表,其实通过积分表,不难发现微分计算与积分计算之间的互逆性。
8.2换元积分法与分部积分法
这一小节是本章的重点,介绍了两种不定积分的计算方法——换元积分法(第一换元积分法、第二换元积分法)与分部积分法。对于换元积分法,一定要注意最后的变量换回,同时,这一部分常常涉及三角函数的相关运用,一定要灵活变换。对于分部积分法,便是要具备拆解函数的能力,寻找到更简便的求解办法,同时还要注意这里面的循环与递推问题。
8.3有理函数与可化为有理函数的不定积分
这一小节是本章的难点,介绍了三种形式的不定积分的计算。针对有理函数的不定积分,要学会运用部分分式分解的步骤进行分式拆解,进行进行积分运算。针对三角函数有理式的不定积分,最常用的办法是换元积分,同时这里也要学会万能公式的运用。针对某些无理式的不定积分,要掌握欧拉变换的办法。最后应该指出,不是所有的函数都具有原函数,有些函数的不定积分无法求解。