26考研|数学分析:定积分及应用

这一部分作为数学分析的灵魂,在数学分析的计算中,绝大部分的问题都可以转换成定积分的计算问题,所以在这部分的学习中,一定要注意提升计算能力,除此之外,由积分引出的相关积分不等式也是分析的重点和难点,需要重点掌握。

课本简单概括

9.1定积分概念

这一小节简要介绍了顶积分问题提出的背景,以及给出了严格的定积分的推导过程与定义,要熟悉“分割→求和→取极限”这一思考路线。

9.2牛顿—莱布尼茨公式

这一小节给出了关于定积分计算的具体公式,运用N-L公式,借助积分与原函数的关系进行计算。

9.3可积条件

这一小节是本章的重点,重点讨论了一个函数是否可积的问题。首先给出了可积的必要条件——可积必有界;接着运用达布上和达布下和之间的关系介绍了可积的充要条件,这一条件需要重点理解,尤其是关于振幅的描述,在证明题中,有关振幅形式的表述形式常常出现;最后介绍了可积函数类,即可积的充分条件:连续必可积、存在有限个间断点的有界函数必可积(单点不影响积分)、单调函数必可积。这一节的各个结论均需要深刻理解,掌握证明思路。

9.4定积分的性质

这一小节是本章的重点,首先介绍了包括线性、积分区间可加性等定积分的基本性质,要重点关注积分不等式性。接着介绍了积分第一中值定理,并由此引出了积分平均值这一概念。

9.5微积分学基本定理·定积分计算(续)

这一小节是本章的难点,首先介绍了变限积分这一新概念,要掌握变限积分求导的方法,紧接着借助变限积分引入了关于原函数存在性的讨论,得出了“连续函数必有原函数”这一基本结论。接着介绍了积分第二中值定理,这一定理在积分不等式的证明题中有诸多应用。然后介绍了定积分中的换元积分法与分部积分法,这些与不定积分的差别不大,注意计算技巧即可。最后介绍了泰勒公式的积分型余项的形式。

9.6定积分的几何应用

这一章主要介绍了四种在几何方面的定积分的应用:平面图形的面积、由平行截面求体积(旋转体的体积)、平面曲线的弧长、旋转曲面的面积。在解题过程中,应该厘清不同坐标系,分清计算公式,注意计算技巧,仔细计算即可。相关计算公式,作者汇总如下:

课本经典习题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值