梯度下降法与经典牛顿下降法

一、梯度下降算法

以函数为例,

(1)求梯度

(2)向梯度相反方向移动x, ,其中,r为步长,如果步长足够小,则可以保证每一次迭代都在减少,但可能导致太慢,如果步长太大,则不能保证每一次迭代都减少,也不能保证收敛;

(3)循环迭代步骤(2),直到x的变化到使得f(x)在两次迭代之间的差值足够小,比如0.00000001,即直到两次迭代计算出来的f(x)基本没有变化,则说明此时f(x)已经达到局部最小值了;

(4)输出x,这个x就是使函数f(x)最小时x的取值

注意:梯度的方向就是导数最大值的方向,即函数变化率最快的方向。因此,梯度方向可以通过对函数求导得到。


梯度下降算法计算过程

(1)初始化(随机初始化);

(2)迭代,新的能够使得更小;

(3)如果无法继续减少或者达到循环上界次数,退出。

                  

       例如,线性回归目标函数的梯度方向计算

                 

         

 梯度下降

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最优化是指在一定的约束条件下,寻找一个使目标函数取得最大值或最小值的过程。梯度下降法牛顿都是最优化问题中常用的方梯度下降法是一种迭代优化算,通过计算目标函数的梯度来不断更新参数的值,直到达到某个停止条件。梯度下降法的思想是沿着目标函数梯度的反方向进行参数调整,以逐步接近最优解。它适用于凸函数和可微函数,并且可以用于求解无约束优化问题和约束优化问题的局部最优解。 牛顿也是一种迭代优化算,它利用函数的二阶导数信息(Hessian矩阵)来逼近函数的局部性质,从而更快地收敛到最优解。牛顿在求解方程根或函数的最小值时非常有效。它经常被用于数学建模、机器学习、数据分析等领域中的参数优化问题,比如最小二乘、逻辑回归、神经网络等模型的参数优化。 需要注意的是,梯度下降法牛顿在不同情况下的效果可能会有所不同。梯度下降法在参数空间中沿着梯度方向逐步搜索最优解,对于大规模数据集和高维参数空间比较适用。而牛顿利用了更多的二阶导数信息,对于曲率较大的函数,在局部区域更容易找到最优解。但是牛顿在计算复杂度和存储空间上可能会有一定的挑战。因此,在实际应用中,我们需要根据具体问题的特点选择合适的优化方

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值