经典牛顿法

经典牛顿法(Pure Newton’s Method)

对于二次连续可微函数 f f f,求
min ⁡ { f ( x ) : x ∈ R n } \min \{ f(\boldsymbol{x}):x\in \mathbb{R}^n\} min{f(x):xRn}

由多元函数泰勒公式
f ( x ) = f ( x k ) + ∇ f ( x k ) T ( x − x k ) + 1 2 ( x − x k ) T ∇ 2 f ( x k ) ( x − x k ) + o ( ∥ x − x k ∥ ) 2 ) f(\boldsymbol{x})=f(\boldsymbol{x}_k)+\nabla f(\boldsymbol{x}_k)^T(\boldsymbol{x}-\boldsymbol{x}_k)+\frac{1}{2}(\boldsymbol{x}-\boldsymbol{x}_k)^T\nabla^2f(\boldsymbol{x}_k)(\boldsymbol{x}-\boldsymbol{x}_k)+o(\Vert \boldsymbol{x}-\boldsymbol{x}_k\Vert)^2) f(x)=f(xk)+f(xk)T(xxk)+21(xxk)T2f(xk)(xxk)+o(xxk)2)
我们忽略高阶项,然后近似 f ( x ) f(\boldsymbol{x}) f(x)
f ( x ) ≈ f ( x k ) + ∇ f ( x k ) T ( x − x k ) + 1 2 ( x − x k ) T ∇ 2 f ( x k ) ( x − x k ) f(\boldsymbol{x})\approx f(\boldsymbol{x}_k)+\nabla f(\boldsymbol{x}_k)^T(\boldsymbol{x}-\boldsymbol{x}_k)+\frac{1}{2}(\boldsymbol{x}-\boldsymbol{x}_k)^T\nabla^2f(\boldsymbol{x}_k)(\boldsymbol{x}-\boldsymbol{x}_k) f(x)f(xk)+f(xk)T(xxk)+21(xxk)T2f(xk)(xxk)
接着找下降最多的地方
x k + 1 = arg ⁡ min ⁡ x ∈ R n { f ( x k ) + ∇ f ( x k ) T ( x − x k ) + 1 2 ( x − x k ) T ∇ 2 f ( x k ) ( x − x k ) } \boldsymbol{x}_{k+1}=\arg \min_{\boldsymbol{x} \in \mathbb{R}^n}\{ f(\boldsymbol{x}_k)+\nabla f(\boldsymbol{x}_k)^T(\boldsymbol{x}-\boldsymbol{x}_k)+\frac{1}{2}(\boldsymbol{x}-\boldsymbol{x}_k)^T\nabla^2f(\boldsymbol{x}_k)(\boldsymbol{x}-\boldsymbol{x}_k)\} xk+1=argxRnmin{f(xk)+f(xk)T(xxk)+21(xxk)T2f(xk)(xxk)}
这里我们假设 ∇ 2 f ( x k ) ≻ 0 \nabla^2 f(\boldsymbol{x}_k) \succ 0 2f(xk)0
那么最小值点就是驻点
所以求个导
∇ f ( x k ) + ∇ 2 f ( x k ) ( x − x k ) = 0 ⇒ x k + 1 = x k − ( ∇ 2 f ( x k ) ) − 1 ∇ f ( x k ) \nabla f(\boldsymbol{x}_k)+\nabla^2f(\boldsymbol{x}_k)(\boldsymbol{x}-\boldsymbol{x}_k)=0\\ \Rightarrow \boldsymbol{x}_{k+1}=\boldsymbol{x}_k-(\nabla^2f(\boldsymbol{x}_k))^{-1}\nabla f(\boldsymbol{x}_k) f(xk)+2f(xk)(xxk)=0xk+1=xk(2f(xk))1f(xk)
− ( ∇ 2 f ( x k ) ) − 1 ∇ f ( x k ) -(\nabla^2f(\boldsymbol{x}_k))^{-1}\nabla f(\boldsymbol{x}_k) (2f(xk))1f(xk)称为牛顿方向
这种更新方式就叫做经典牛顿法

缺点

首先计算海森矩阵,计算量很大,更何况还要求逆
而且,尽管我们要求海森矩阵正定,但是也不能保证收敛
例如 f ( x ) = 1 + x 2 f(x)=\sqrt{1+x^2} f(x)=1+x2 ,用经典牛顿法
在初始点 ∣ x 0 ∣ < 1 \left|x_0\right|<1 x0<1收敛, ∣ x 0 ∣ ≥ 1 \left| x_0\right| \ge 1 x01发散

收敛性

引理1

A T = A A^T=A AT=A,则 ∥ A ∥ = λ max ⁡ ( A ) \Vert A\Vert = \lambda_{\max}(A) A=λmax(A)
证明:
A x = λ x Ax=\lambda x Ax=λx
A T x = λ x A^T x=\lambda x ATx=λx
A T A x = A T λ x = λ 2 x A^TAx=A^T\lambda x=\lambda^2 x ATAx=ATλx=λ2x
∥ A ∥ = λ max ⁡ ( A T A ) = λ max ⁡ ( A ) \Vert A\Vert =\sqrt{\lambda_{\max}(A^TA)}=\lambda_{\max}(A) A=λmax(ATA) =λmax(A)

定理1

假设 f f f二阶连续可微,并且
1) ∃ m > 0 \exists m>0 m>0,对于 ∀ x ∈ R n \forall x\in \mathbb{R}^n xRn,有 ∇ 2 f ( x ) ⪰ m I \nabla^2 f(\boldsymbol{x})\succeq mI 2f(x)mI
2) ∃ L > 0 \exists L>0 L>0,对于 ∀ x , y ∈ R n \forall \boldsymbol{x},\boldsymbol{y}\in \mathbb{R}^n x,yRn,有 ∥ ∇ 2 f ( x ) − ∇ 2 f ( y ) ∥ ≤ L ∥ x − y ∥ \Vert \nabla^2 f(\boldsymbol{x}) -\nabla^2 f(\boldsymbol{y})\Vert \le L \Vert \boldsymbol{x} - \boldsymbol{y} \Vert 2f(x)2f(y)Lxy

{ x k } k ≥ 0 \{\boldsymbol{x}_k \}_{k\ge 0} {xk}k0为经典牛顿法产生的序列,
x ∗ \boldsymbol{x}^{*} x R n \mathbb{R}^{n} Rn上唯一的最小值点
那么
∥ x k + 1 − x ∗ ∥ ≤ L 2 m ∥ x k − x ∗ ∥ 2 ( k = 0 , 1 , ⋯   ) \Vert \boldsymbol{x}_{k+1} -\boldsymbol{x}^{*}\Vert \le \frac{L}{2m}\Vert \boldsymbol{x}_k - \boldsymbol{x}^{*}\Vert^2 (k=0,1,\cdots) xk+1x2mLxkx2(k=0,1,)
并且如果 ∥ x 0 − x ∗ ∥ ≤ m L \Vert \boldsymbol{x}_0 - \boldsymbol{x}^{*}\Vert \le \frac{m}{L} x0xLm,那么
∥ x k − x ∗ ∥ ≤ 2 m L ( 1 2 ) 2 k ( k = 0 , 1 , ⋯   ) \Vert \boldsymbol{x}_{k} - \boldsymbol{x}^{*} \Vert \le \frac{2m}{L}(\frac{1}{2})^{2^{k}}(k=0,1,\cdots) xkxL2m(21)2k(k=0,1,)

证明:
显然 ∇ f ( x ∗ ) = 0 \nabla f(\boldsymbol{x}^{*})=0 f(x)=0
x k + 1 − x ∗ = x k − ( ∇ 2 f ( x k ) ) − 1 ∇ f ( x k ) − x ∗ = x k − x ∗ − ( ∇ 2 f ( x k ) ) − 1 ( ∇ f ( x k ) − ∇ 2 f ( x ∗ ) ) = x k − x ∗ + ( ∇ 2 f ( x k ) ) − 1 ∫ 0 1 ∇ 2 f ( x k + t ( x ∗ − x k ) ) ( x ∗ − x k ) d t = ( ∇ 2 f ( x k ) ) − 1 ∫ 0 1 [ ∇ 2 f ( x k + t ( x ∗ − x k ) ) − ∇ 2 f ( x k ) ] ( x ∗ − x k ) d t \begin{aligned} \boldsymbol{x}_{k+1}- \boldsymbol{x}^{*} &= \boldsymbol{x}_k-(\nabla^2 f( \boldsymbol{x}_{k}))^{-1}\nabla f( \boldsymbol{x}_k)- \boldsymbol{x}^{*}\\ &= \boldsymbol{x}_k-\boldsymbol{x}^{*}-(\nabla^2 f( \boldsymbol{x}_{k}))^{-1}(\nabla f( \boldsymbol{x}_k)-\nabla^2 f(\boldsymbol{x}^{*}))\\ &= \boldsymbol{x}_k-\boldsymbol{x}^{*}+(\nabla^2 f( \boldsymbol{x}_{k}))^{-1}\int_{0}^{1} \nabla^2f(\boldsymbol{x}_{k}+t(\boldsymbol{x}^{*}-\boldsymbol{x}_{k}))(\boldsymbol{x}^{*}-\boldsymbol{x}_{k})\mathrm{d}t\\ &=(\nabla^2 f( \boldsymbol{x}_{k}))^{-1}\int_{0}^{1} \left[\nabla^2f(\boldsymbol{x}_{k}+t(\boldsymbol{x}^{*}-\boldsymbol{x}_{k}))-\nabla^2 f( \boldsymbol{x}_{k})\right](\boldsymbol{x}^{*}-\boldsymbol{x}_{k})\mathrm{d}t\\ \end{aligned} xk+1x=xk(2f(xk))1f(xk)x=xkx(2f(xk))1(f(xk)2f(x))=xkx+(2f(xk))1012f(xk+t(xxk))(xxk)dt=(2f(xk))101[2f(xk+t(xxk))2f(xk)](xxk)dt
∇ 2 f ( x ) ⪰ m I ⇒ λ ≥ m ⇒ 1 m ≤ 1 λ ⇒ ∥ ( ∇ 2 f ( x ) ) − 1 ∥ ≤ 1 m \nabla^2 f(\boldsymbol{x})\succeq mI \Rightarrow \lambda\ge m \Rightarrow \frac{1}{m}\le \frac{1}{\lambda}\Rightarrow \Vert (\nabla^2 f(\boldsymbol{x}))^{-1} \Vert \le \frac{1}{m} 2f(x)mIλmm1λ1(2f(x))1m1
∥ ∫ 0 1 [ ∇ 2 f ( x k + t ( x ∗ − x k ) ) − ∇ 2 f ( x k ) ] ( x ∗ − x k ) d t ∥ ≤ ∫ 0 1 ∥ [ ∇ 2 f ( x k + t ( x ∗ − x k ) ) − ∇ 2 f ( x k ) ] ( x ∗ − x k ) ∥ d t ≤ ∫ 0 1 ∥ ∇ 2 f ( x k + t ( x ∗ − x k ) ) − ∇ 2 f ( x k ) ∥ ∥ x ∗ − x k ∥ d t ≤ ∫ 0 1 L ∥ x k + t ( x ∗ − x k ) − x k ∥ ∥ x ∗ − x k ∥ d t ≤ ∫ 0 1 L ∥ t ( x ∗ − x k ) ∥ ∥ x ∗ − x k ∥ d t ≤ ∫ 0 1 L t ∥ ( x ∗ − x k ) ∥ ∥ x ∗ − x k ∥ d t = L 2 ∥ x k − x ∗ ∥ 2 \begin{aligned} &\quad \Vert \int_{0}^{1} \left[\nabla^2f(\boldsymbol{x}_{k}+t(\boldsymbol{x}^{*}-\boldsymbol{x}_{k}))-\nabla^2 f( \boldsymbol{x}_{k})\right](\boldsymbol{x}^{*}-\boldsymbol{x}_{k})\mathrm{d}t \Vert\\ &\le \int_{0}^{1} \Vert \left[\nabla^2f(\boldsymbol{x}_{k}+t(\boldsymbol{x}^{*}-\boldsymbol{x}_{k}))-\nabla^2 f( \boldsymbol{x}_{k})\right](\boldsymbol{x}^{*}-\boldsymbol{x}_{k}) \Vert \mathrm{d}t \\ &\le \int_{0}^{1} \Vert \nabla^2f(\boldsymbol{x}_{k}+t(\boldsymbol{x}^{*}-\boldsymbol{x}_{k}))-\nabla^2 f( \boldsymbol{x}_{k})\Vert\Vert\boldsymbol{x}^{*}-\boldsymbol{x}_{k} \Vert \mathrm{d}t \\ &\le \int_{0}^{1} L\Vert \boldsymbol{x}_{k}+t(\boldsymbol{x}^{*}-\boldsymbol{x}_{k})-\boldsymbol{x}_{k}\Vert\Vert\boldsymbol{x}^{*}-\boldsymbol{x}_{k} \Vert \mathrm{d}t \\ &\le \int_{0}^{1} L\Vert t(\boldsymbol{x}^{*}-\boldsymbol{x}_{k})\Vert\Vert\boldsymbol{x}^{*}-\boldsymbol{x}_{k} \Vert \mathrm{d}t \\ &\le \int_{0}^{1} Lt\Vert (\boldsymbol{x}^{*}-\boldsymbol{x}_{k})\Vert\Vert\boldsymbol{x}^{*}-\boldsymbol{x}_{k} \Vert \mathrm{d}t \\ &=\frac{L}{2}\Vert\boldsymbol{x}_{k}-\boldsymbol{x}^{*} \Vert ^2 \end{aligned} 01[2f(xk+t(xxk))2f(xk)](xxk)dt01[2f(xk+t(xxk))2f(xk)](xxk)dt012f(xk+t(xxk))2f(xk)xxkdt01Lxk+t(xxk)xkxxkdt01Lt(xxk)xxkdt01Lt(xxk)xxkdt=2Lxkx2
所以
∥ x k + 1 − x ∗ ∥ ≤ L 2 m ∥ x k − x ∗ ∥ 2 \Vert \boldsymbol{x}_{k+1}- \boldsymbol{x}^{*} \Vert \le \frac{L}{2m}\Vert\boldsymbol{x}_{k}-\boldsymbol{x}^{*} \Vert ^2 xk+1x2mLxkx2
接着用数学归纳法证明 ∥ x k − x ∗ ∥ ≤ 2 m L ( 1 2 ) 2 k \Vert \boldsymbol{x}_{k} - \boldsymbol{x}^{*} \Vert \le \frac{2m}{L}(\frac{1}{2})^{2^{k}} xkxL2m(21)2k
k = 0 k=0 k=0时,
∥ x 0 − x ∗ ∥ ≤ m L = 2 m L ( 1 2 ) 2 0 \Vert \boldsymbol{x}_0 - \boldsymbol{x}^{*}\Vert \le \frac{m}{L}=\frac{2m}{L}(\frac{1}{2})^{2^{0}} x0xLm=L2m(21)20
成立
假设 k k k时成立
k + 1 k+1 k+1
∥ x k + 1 − x ∗ ∥ ≤ L 2 m ∥ x k − x ∗ ∥ 2 ≤ L 2 m ( 2 m L ( 1 2 ) 2 k ) 2 = 2 m L ( 1 2 ) 2 k + 1 \Vert \boldsymbol{x}_{k+1}- \boldsymbol{x}^{*} \Vert \le \frac{L}{2m}\Vert\boldsymbol{x}_{k}-\boldsymbol{x}^{*} \Vert ^2\le \frac{L}{2m} (\frac{2m}{L}(\frac{1}{2})^{2^{k}})^2=\frac{2m}{L}(\frac{1}{2})^{2^{k+1}} xk+1x2mLxkx22mL(L2m(21)2k)2=L2m(21)2k+1
成立

所以我们得出如果初始点足够近,那么经典牛顿法是二次收敛的

定理2

假设 f f f二阶连续可微
设最小值点为 x ∗ \boldsymbol{x}^{*} x
存在 L > 0 L>0 L>0,对于 ∀ x , y ∈ N δ ( x ∗ ) \forall \boldsymbol{x},\boldsymbol{y}\in N_{\delta}(\boldsymbol{x}^{*}) x,yNδ(x)( x ∗ \boldsymbol{x}^{*} x的领域),有
∥ ∇ 2 f ( x ) − ∇ 2 f ( y ) ∥ ≤ L ∥ x − y ∥ \Vert \nabla^2 f(\boldsymbol{x}) -\nabla^2 f(\boldsymbol{y})\Vert \le L \Vert \boldsymbol{x} - \boldsymbol{y} \Vert 2f(x)2f(y)Lxy
如果 ∇ f ( x ∗ ) = 0 , ∇ 2 f ( x ∗ ) ≻ 0 \nabla f(\boldsymbol{x}^{*})=0,\nabla^2f(\boldsymbol{x}^{*})\succ0 f(x)=0,2f(x)0,则
1)如果初始点离 x ∗ \boldsymbol{x}^{*} x足够近,则 { x k } \{\boldsymbol{x}_{k}\} {xk}收敛到 x ∗ \boldsymbol{x}^{*} x
2) { x k } \{\boldsymbol{x}_{k}\} {xk}收敛到 x ∗ \boldsymbol{x}^{*} x的速度是Q-二次的
3) { ∥ ∇ f ( x k ) ∥ } \{\Vert \nabla f(\boldsymbol{x}_k)\Vert \} {f(xk)}Q-二次收敛到0
证明:
因为 ∇ 2 f ( x ∗ ) \nabla^2f(\boldsymbol{x}^{*}) 2f(x)是非奇异的,并且 f f f二阶连续可微,因此
∃ r > 0 \exists r>0 r>0,对于任意满足 ∥ x − x ∗ ∥ < r \Vert \boldsymbol{x}- \boldsymbol{x}^{*}\Vert<r xx<r x \boldsymbol{x} x,均有
∥ ( ∇ 2 f ( x ) ) − 1 ∥ ≤ 2 ∥ ( ∇ 2 f ( x ∗ ) ) − 1 ∥ \Vert (\nabla^2f(\boldsymbol{x}))^{-1}\Vert \le 2\Vert (\nabla^2f(\boldsymbol{x}^{*}))^{-1}\Vert (2f(x))12(2f(x))1
其实我也没看懂上面这个

然后与定理1类似,有
∥ x k + 1 − x ∗ ∥ ≤ 2 ∥ ( ∇ 2 f ( x ∗ ) ) − 1 ∥ L 2 ∥ x k − x ∗ ∥ 2 = L ∥ ( ∇ 2 f ( x ∗ ) ) − 1 ∥ ∥ x k − x ∗ ∥ 2 \Vert \boldsymbol{x}_{k+1}- \boldsymbol{x}^{*} \Vert \le 2\Vert (\nabla^2f(\boldsymbol{x}^{*}))^{-1}\Vert\frac{L}{2}\Vert\boldsymbol{x}_{k}-\boldsymbol{x}^{*} \Vert ^2=L\Vert (\nabla^2f(\boldsymbol{x}^{*}))^{-1}\Vert \Vert\boldsymbol{x}_{k}-\boldsymbol{x}^{*} \Vert ^2 xk+1x2(2f(x))12Lxkx2=L(2f(x))1xkx2
因此,当 x 0 \boldsymbol{x}_0 x0满足
∥ x 0 − x ∗ ∥ ≤ min ⁡ { δ , r , 1 2 L ∥ ∇ 2 f ( x ∗ ) − 1 ∥ } =  def  δ ^ \Vert x^{0}-x^{*}\Vert \le \min \left\{\delta, r, \frac{1}{2 L\Vert \nabla^{2} f\left(x^{*}\right)^{-1}\Vert }\right\} \stackrel{\text { def }}{=} \hat{\delta} x0xmin{δ,r,2L2f(x)11}= def δ^
时,可保证 { x k } \{\boldsymbol{x}_{k}\} {xk}收敛到 N δ ^ ( x ∗ ) N_{\hat{\delta}}(\boldsymbol{x}^{*}) Nδ^(x)中(其实我也没看懂
因此 { x k } \{\boldsymbol{x}_{k}\} {xk}Q-二次收敛到 x ∗ \boldsymbol{x}^{*} x

根据 ∇ f ( x k ) + ∇ 2 f ( x k ) ( x − x k ) = 0 \nabla f(\boldsymbol{x}_k)+\nabla^2f(\boldsymbol{x}_k)(\boldsymbol{x}-\boldsymbol{x}_k)=0 f(xk)+2f(xk)(xxk)=0

∥ ∇ f ( x k + 1 ) ∥ = ∥ ∇ f ( x k + 1 ) − ( ∇ f ( x k ) + ∇ 2 f ( x k ) ( x − x k ) ) ∥ = ∥ ∫ 0 1 ∇ 2 f ( x k + t ( x − x k ) ) ( x − x k ) d t − ∇ 2 f ( x k ) ( x − x k ) ) ∥ = ∥ ∫ 0 1 [ ∇ 2 f ( x k + t ( x − x k ) ) − ∇ 2 f ( x k ) ] ( x − x k ) d t ∥ ≤ L 2 ∥ x − x k ∥ 2 = L 2 ∥ − ( ∇ 2 f ( x k ) ) − 1 ∇ f ( x k ) ∥ 2 ≤ L 2 ∥ ( ∇ 2 f ( x k ) ) − 1 ∥ 2 ∥ ∇ f ( x k ) ∥ 2 ≤ L 2 4 ∥ ( ∇ 2 f ( x ∗ ) ) − 1 ∥ 2 ∥ ∇ f ( x k ) ∥ 2 = 2 L ∥ ( ∇ 2 f ( x ∗ ) ) − 1 ∥ 2 ∥ ∇ f ( x k ) ∥ 2 \begin{aligned} \Vert \nabla f(\boldsymbol{x}_{k+1}) \Vert &= \Vert \nabla f(\boldsymbol{x}_{k+1}) -(\nabla f(\boldsymbol{x}_k)+\nabla^2f(\boldsymbol{x}_k)(\boldsymbol{x}-\boldsymbol{x}_k))\Vert\\ &=\Vert \int_{0}^{1} \nabla^2f(\boldsymbol{x}_{k}+t(\boldsymbol{x}-\boldsymbol{x}_k))(\boldsymbol{x}-\boldsymbol{x}_k)\mathrm{d}t -\nabla^2f(\boldsymbol{x}_k)(\boldsymbol{x}-\boldsymbol{x}_k))\Vert\\ &=\Vert \int_{0}^{1} \left[\nabla^2f(\boldsymbol{x}_{k}+t(\boldsymbol{x}-\boldsymbol{x}_k))-\nabla^2f(\boldsymbol{x}_k)\right](\boldsymbol{x}-\boldsymbol{x}_k)\mathrm{d}t \Vert\\ &\le \frac{L}{2}\Vert \boldsymbol{x}-\boldsymbol{x}_k \Vert^2\\ &=\frac{L}{2}\Vert -(\nabla^2f(\boldsymbol{x}_k))^{-1}\nabla f(\boldsymbol{x}_k)\Vert^2\\ &\le \frac{L}{2} \Vert (\nabla^2f(\boldsymbol{x}_k))^{-1}\Vert^2 \Vert \nabla f(\boldsymbol{x}_k) \Vert^2\\ &\le \frac{L}{2} 4\Vert (\nabla^2f(\boldsymbol{x}^{*}))^{-1}\Vert^2 \Vert \nabla f(\boldsymbol{x}_k) \Vert^2\\ &=2L\Vert (\nabla^2f(\boldsymbol{x}^{*}))^{-1}\Vert^2 \Vert \nabla f(\boldsymbol{x}_k) \Vert^2\\ \end{aligned} f(xk+1)=f(xk+1)(f(xk)+2f(xk)(xxk))=012f(xk+t(xxk))(xxk)dt2f(xk)(xxk))=01[2f(xk+t(xxk))2f(xk)](xxk)dt2Lxxk2=2L(2f(xk))1f(xk)22L(2f(xk))12f(xk)22L4(2f(x))12f(xk)2=2L(2f(x))12f(xk)2
所以 { ∥ ∇ f ( x k ) ∥ } \{\Vert \nabla f(\boldsymbol{x}_k)\Vert \} {f(xk)}Q-二次收敛到0

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值