Problem Description
司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。Input
第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符('P'或者'H'),中间没有空格。按顺序表示地图中每一行的数据。N <= 100;M <= 10。Output
仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
Sample Input
5 4
PHPP
PPHH
PPPP
PHPP
PHHPSample Output
6
思路:状压DP
思路来源:点击这里
用一个三维数组按层数来进行状态的转移,依次枚举每一层(i)、当前层状态(j)、上一层状态(k)、上上层状态(l),即可进行转移
关于枚举状态,理论上每一行都有 1<<m 种可能,如果依次枚举一定会 TLE,但实际上,因为 m 最大为10,且每3个不相邻,因此每一行的最多状态数只有60种可能。
因此对于状态 x,只需右移一位后与原数进行与运算判断是否为零,即可快速的判断其是否存在互相攻击的情况。
原理:如果二进制位的每一个 1 都是被大于等于 1 个零隔开的,那么错位之后绝对不会出现两个 1 位于同一个位置上,所以 & 起来之后一定是为 0,反之如果不为 0,则说明至少有一个地方是出现了两个 1 相连的。
Source Program
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<ctime>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 1001
#define MOD 10007
#define E 1e-6
#define LL long long
using namespace std;
int n,m;
int len;
int dp[110][70][70];
int num[110],sta[110];
int Map[110];
bool check(int x)//判断状态是否合法
{
if((x&(x<<1))||(x&(x<<2)))
return false;
return true;
}
int Get_Num(int x)//取x状态共有多少个1
{
int cnt=0;
while(x)
{
cnt++;
x&=(x-1);
}
return cnt;
}
bool judge(int x,int a)//判断是否与上一层状态合法
{
if(x&a)
return false;
return true;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF&&(n+m))
{
len=0;
memset(Map,0,sizeof(Map));
memset(dp,-1,sizeof(dp));
memset(num,0,sizeof(num));
memset(sta,0,sizeof(sta));
for(int i=0;i<(1<<m);i++)
{
if(check(i))
{
sta[len]=i;
num[len++]=Get_Num(i);
}
}
char str[201];
for(int i=0;i<n;i++)
{
scanf("%s",str);
for(int j=0;j<m;j++)
if(str[j]=='H')//存图,将‘H’认为会冲突的点,将一个字符串状态压缩成一个数
Map[i]+=(1<<j);
}
int res=0;
for(int i=0;i<len;i++)
{
if(judge(sta[i],Map[0]))
{
dp[0][0][i]=num[i];
res=max(num[i],res);
}
}
for(int i=1;i<n;i++)//枚举层数
for(int j=0;j<len;j++)//枚举当前状态
if(judge(sta[j],Map[i]))
for(int k=0;k<len;k++)//枚举上一层状态
if(judge(sta[j],sta[k]))
for(int l=0;l<len;l++)//枚举上上层状态
if(judge(sta[j],sta[l])&&dp[i-1][k][l]!=-1){
dp[i][l][j]=max(dp[i-1][k][l]+num[j],dp[i][l][j]);
res=max(dp[i][l][j],res);
}
cout<<res<<endl;
}
return 0;
}