思路
453. 最小操作次数使数组元素相等
根据题意,每次操作将会使 n - 1 个元素增加 1 。由于你执行了 k 次,所以一共会使 sum 增加 k * (n - 1) 。即操作结束后数组的和为 sum + k * (n - 1) 。
贪心部分:在整个流程的每次操作中,最小的那个值都会增加 1 。(贪心的证明在下个板块,建议最后看)
由贪心可知,经过k 步后, min 变为了 min + k ,也意味着此时数组的每一项都变为了 min + k ,所以操作结束后数组的和为 n * (min + k) 。
sum + k * (n - 1) = n * (min + k)
sum + k * n - k = n * min + n * k
sum - k = n * min
k = sum - n * min
所以,最短操作次数为 k = sum - n * min
462. 最少移动次数使数组元素相等 II
中位数的思路:
假如数组长度为奇数2n+1,则中位数两边各有n个数,设左边所有数和中位数的差值和为x,右边所有数和中位数的差值和为y,则所有需要移动的次数为x+y,如果不选择中位数,例如选择中位数-1,这样总的移动次数就变成了 >= ((x-n) + (y+n) + 1) 最好的情况下比中位数大1;
如果数组长度是偶数,有两个中位数,选择两个中位数的任何一个或者两个中位数的平均数,都是可以的。
代码实现(java)
453. 最小操作次数使数组元素相等
class Solution {
public int minMoves(int[] nums) {
int l = nums.length;
int sum = 0;
int min = Integer.MAX_VALUE;
for(int num : nums) {
sum += num;
min = Math.min(num, min);
}
return sum - l * min;
}
}
462. 最少移动次数使数组元素相等 II
class Solution {
public int minMoves2(int[] nums) {
Arrays.sort(nums);
int i = 0;
int j = nums.length - 1;
int res = 0;
while(i < j) {
res += Math.abs(nums[j--] - nums[i++]);
}
return res;
}
}