LeetCode 453. 最小操作次数使数组元素相等 & 462. 最少移动次数使数组元素相等 II (排序 | 数学)

该博客探讨了如何通过最小操作次数使数组元素相等的问题,分别提供了453题和462题的解决方案。453题中,通过贪心策略确定每次操作将最小值加1,得出最短操作次数为`k=sum-n*min`。462题则涉及中位数的概念,通过计算数组排序后的差值和来确定最少移动次数。两题均给出了Java代码实现。
摘要由CSDN通过智能技术生成

在这里插入图片描述


在这里插入图片描述

思路

453. 最小操作次数使数组元素相等
根据题意,每次操作将会使 n - 1 个元素增加 1 。由于你执行了 k 次,所以一共会使 sum 增加 k * (n - 1) 。即操作结束后数组的和为 sum + k * (n - 1) 。
贪心部分:在整个流程的每次操作中,最小的那个值都会增加 1 。(贪心的证明在下个板块,建议最后看)
由贪心可知,经过k 步后, min 变为了 min + k ,也意味着此时数组的每一项都变为了 min + k ,所以操作结束后数组的和为 n * (min + k) 。
sum + k * (n - 1) = n * (min + k)
sum + k * n - k = n * min + n * k
sum - k = n * min
k = sum - n * min

所以,最短操作次数为 k = sum - n * min

462. 最少移动次数使数组元素相等 II
中位数的思路:
假如数组长度为奇数2n+1,则中位数两边各有n个数,设左边所有数和中位数的差值和为x,右边所有数和中位数的差值和为y,则所有需要移动的次数为x+y,如果不选择中位数,例如选择中位数-1,这样总的移动次数就变成了 >= ((x-n) + (y+n) + 1) 最好的情况下比中位数大1;
如果数组长度是偶数,有两个中位数,选择两个中位数的任何一个或者两个中位数的平均数,都是可以的。

代码实现(java)

453. 最小操作次数使数组元素相等

class Solution {
    public int minMoves(int[] nums) {
        int l = nums.length;
        int sum = 0;
        int min = Integer.MAX_VALUE;
        for(int num : nums) {
            sum += num;
            min = Math.min(num, min);
        }
        return sum - l * min;
    }
}

462. 最少移动次数使数组元素相等 II

class Solution {
    public int minMoves2(int[] nums) {
        Arrays.sort(nums);
        int i = 0;
        int j = nums.length - 1;
        int res = 0;
        while(i < j) {
            res += Math.abs(nums[j--] - nums[i++]);
        }

        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值