P5739 【深基7.例7】计算阶乘
[题目链接]https://www.luogu.com.cn/problem/P5739添加链接描述
题意
求n!(n的阶乘),这是基本题
思路
- 定义函数
- 主函数中运用函数
- 输出结果
坑点
简单题,没坑点,主要是定义函数,主函数中应用函数。递归应该大都是先定义函数,然后运用这个函数。
算法一:递归
实现步骤
- 先定以一个函数用做计算,函数中嵌套一个if、else语句。
- 如果!=1,则前一个数的阶乘乘本身,return表示返回。 如果!=1,则前一个数的阶乘乘本身,return表示返回。
- 最后在主函数中应用定义的函数,然后输出结果。
代码
#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;//头文件
int jc(int x)//先定以一个函数用做计算
{
if(x==1)//如果=1,则返回(return)1,因为1!=1
{
return 1;
}
else
{
return jc(x-1)*x;//如果!=1,则前一个数的阶乘乘本身,return表示返回。
}
}
int main()//主函数
{
int n;//定义数
cin>>n;//输入数
cout<<jc(n);//输出阶乘,jc表示上面定义的函数
return 0;//终止程序
}
总结
递归和递推的不同点:
递推:算法通过重复应用相同的或类似的步骤来解决问题。每一步都基于前一步的结果。
递归:算法通过调用自身来解决问题。递归函数在其定义或执行过程中调用自身。
用途:
递推:常用于求解序列或数列的问题,如计算斐波那契数列、计算多项式等。
递归:常用于解决可以分解为子问题的问题,如计算阶乘、回溯搜索等。
停止条件:
递推:通常有明确的停止条件,一旦满足就停止计算。
递归:必须有停止递归的条件,否则程序将永远调用自身。
可读性:
递推:通常更易于阅读和理解,因为它通常使用循环结构。
递归:可能更复杂,因为它涉及到函数调用和返回。