PS:如果读过题了可以跳过题目描述直接到题解部分
暂无提交链接
题目
题目描述
牛牛和牛妹在玩猜球游戏,牛牛首先准备了 10 个小球,小球的编号从 0~9。首先,牛牛把这 10 个球按照从左到右编号为 0,1,2,3...9 的顺序摆在了桌子上,接下来牛牛把这 10 个球用 10 个不透明的杯子倒扣住。
牛牛接下来会按照一定的操作顺序以极快的速度交换这些杯子。
换完以后他问牛妹你看清楚从左到右的杯子中小球的编号了么?
由于牛妹的动态视力不是很好,所以她跑来向你求助。你在调查后发现牛牛置换杯子其实是有一定原则的。
具体来讲,牛牛有一个长度大小为 n 的操作序列。
操作序列的每一行表示一次操作都有两个非负整数 a,b,表示本次操作将会交换从左往右数第 a 个杯子和从左往右数第 b 个杯子(a 和 b 均从 0 开始数)。请注意是换杯子,而不是直接交换 a 号球和 b 号球。
牛牛和牛妹一共玩了 m 次猜球游戏,在每一轮游戏开始时,他都将杯子中的小
球重置到从左往右依次为 0,1,2,3...9 的状态。
然后在第 i 轮游戏中牛牛会按照操作序列中的第 l[i] 个操作开始做,一直做到第 r[i] 个操作结束(l 和 r 的编号从 1 开始计算)。
由于你提前搞到了牛牛的操作序列以及每一次游戏的 l,r。请你帮助牛妹回答出牛牛每一轮游戏结束时,从左至右的杯子中小球的编号各是多少。
输入格式
首先输入一行两个正整数 n,m,表示操作序列的长度以及进行游戏的次数。
接下来 n