智慧交通发展下的路口多维度指标体系研究

image-20211022105818637

本站文章引用或转载写明来源,感谢原作者的辛苦写作,如果有异议或侵权,及时联系我处理,谢谢!

更多车路协同,车路协同建设解决方案,参考链接:https://gitee.com/AiShiYuShiJiePingXing/smart-city

  • 个人网站:https://www.lovebetterworld.com/
  • QQ:1090239782
  • 微信:lovebetterworld
  • 公众号:爱是与世界平行

image-20210702094058887

​ 伴随“智慧城市”和“智慧交通”蓬勃发展,各大城市均在交通感知端,通过增加摄像头、信号灯、线圈等设备,不断补全城市道路交通的感知盲点,或者将现有模拟、标清摄像头升级到高清摄像头,强化感知能力;作为城市道路交通网重要节点的路口,其所负载的设施设备,关联的交通数据也越来越多,如何顺应时代的要求,实现路口的智慧化成为了一个重要的研究课题。

​ 本文从路口范围出发,通过分析路口表达维度,实现路口的数字化表达思路;进而通过设计数字路口体系,组建路口多维度指标体系,从而推动路口由物理实体向数字体转变,为最终实现智慧路口提供一个参考的途径。

1、路口范围定义

​ 基于不同文献对平面交叉口的覆盖范围规定与研究,本文将城市道路交通中的路口范围定义为构成该路口各条道路的相交部分及其进口机动车导向车道线为实线处的垂直线所围成的区域,如图1中红色实线所围成区域。

img

​ 图1 城市交通道路网路口范围示意图

​ 该路口范围内不同行驶方向的车辆已经完成车道变更,车流趋于稳定,并且能够覆盖非机动车以及行人通行区域;基本上能够涵盖路口相关的设施设备等。

2、路口多维度指标体系

2.1 路口刻画维度分析

​ 路口及与之相关联的对象如图2所示,有设施、交通参与者、感知设备以及采集的交通数据、信号控制机、事件等等对象。类似于人体由九大系统组成,即运动系统、消化系统、呼吸系统、泌尿系统、生殖系统、内分泌系统、免疫系统、神经系统和循环系统,本文暂将路口划分为感知设备层、数据质量层、运行状态层、信号控制层、交通违法层与交通事故层6个维度,以此来刻画路口。

​ 特别注意:部分采集设备可能不在1中划分的路口范围内,但采集的数据是与路口相关的,因此从逻辑归属上讲,也包含在路口范围内。

img

​ 图2物理实体路口维度划分

2.2 数字路口体系

​ 基于2.1中对路口刻画维度的划分,本小节设计了数字路口体系,如图3所示,形成了“6-2-1”总格局体系,其中,“6”是指感知设备层指标、数据质量层指标、运行状态层指标、信号控制层指标、交通违法层指标、交通事故层指标6个维度指标层,“2”是指基础指标层和评价指标层,“1”是指一个路口综合状态指标。

img

​ 图3 数字路口体系示意图

2.3 路口多维度指标体系

​ 根据2.2中数字路口体系以及文献分析,选取各维度的指标组建与数字路口体系相符的路口多维度指标体系。

(1)感知设备层指标

​ 该层指标主要用以反映路口的交通数据采集水平,即交通流采集设备数量、设备覆盖车道、设备质量等状况;设备种类可以是线圈、雷达、视频等采集设备。

​ 1)感知设备数

​ 是指路口布设采集交通流参数的设备数量。

​ 2)设备完好率

​ 是指设备运行状态良好的数量与感知设备数的比值。

​ 3)覆盖车道数

​ 是指感知设备所能采集交通流的车道数量。

​ 4)有效覆盖车道数

​ 是指完好状态的采集设备所能采集交通流的车道数量。

​ 5)感知设备层状态指数

​ 是指有效覆盖车道数与路口总车道数之比。该指标用于评价路口交通参数采集水平,数值越大说明水平越高。

(2)数据质量层

​ 该层指标主要用于反映路口感知设备所采数据的质量状况,为是否能支持路口流量统计等应用提供判别依据。

​ 1)完整性

​ 是指单车道采集数据在数量上缺失程度,例如针对scats系统可定义为有数据的时长占全天时长的比值。

​ 2)有效性

​ 是指单车道采集到的数据在合理性上的达标程度,例如针对scats可定义为合理数据时长占全天时长的比值。

​ 3)实时性

​ 是指采集数据时间与数据入库时间之间的差值。

​ 4)数据质量层状态指数

​ 采集数据满足完整性、有效性、实时性的车道数占路口总车道数的比值。该指标用于评价路口所采集数据质量好坏程度,数值越大,则该路口的采集数据质量就越好。其中,根据具体要求设置完整性、有效性和实时性的阈值要求。

(3)运行状态层

​ 主要用以反映路口的交通流量、通行能力以及运行效率等情况。

​ 1)路口通行能力

​ 是指路口所有进口道通行能力之和。

​ 2)路口交通量

​ 是指单位时间段内通过路口各进口道的车辆数之和。

​ 3)路口饱和度

​ 是指路口的交通负荷程度的指标,等于路口各进口道饱和度的流量加权值。

​ 4)路口延误

​ 是指由于道路与环境条件、交通干扰以及交通管理与控制等驾驶员无法控制的因素所引起的行程时间损失,单位秒/辆。

​ 5)路口拥堵指数

​ 是指为拥堵周期时长占总周期时长的比例,单位%,取值1~100之间。

​ 6)运行状态层状态指数

​ 是指路口非拥堵周期时长占总周期时长的比例,取值1~100之间。该指标数值越高,则该路口的运行状态就越好。

(4)信号控制层

​ 单个路口的信号配时参数有:周期时长和绿信比,为反应路口信号配时的合理性,现针对周期过长问题、周期饱和度不匹配问题、绿信比不匹配问题3类问题设计3个相关指数,用以反映路口信号配时是否合理。

​ 1)周期时长过长累计时长

​ 是指一天内满足周期时长>周期时长阈值的时长累计之和,单位h。

​ 2)周期饱和度不匹配累计时长

​ 是指一天内周期饱和度不匹配的时间累计值,单位h 。

​ 3)绿信比不匹配累计时长

​ 是指一天内绿信比不匹配的时间累计值,单位h 。

​ 4)信号控制层状态指数

​ 是指一天内不存在周期过长、周期饱和度不匹配、绿信比比匹配的周期个数与当天总周期个数的比值。该指标用于评价信号路口的信号控制参数的合理性,数值越高,则该路口的运行状态越好。

(5)交通违法层

​ 该指标层主要反映路口通行秩序情况,不仅包括逆行、闯红灯等机动车违法,也包括非机动车、行人路口内横穿乱跑、闯灯越线等违法。现粗略地将违法行为分为机动车违法、非机动车违法及行人违法三种类型。

​ 1)机动车违法量

​ 该指标是指机动车在路口违反交通信号、不按指定车道行驶等违法数量。

​ 2)非机动车违法量

​ 该指标是指非机动车在路口违反交通信号等违法数量。

​ 3)行人违法量

​ 该指标是指行人在路口违反交通信号等违法数量。

​ 4)路口综合违法量

​ 该指标用于综合评价机动车、非机动车和行人的违法数量。

​ 5)交通违法层状态指数

​ 该指数用于评价路口交通参与者遵守秩序的程度,数值越大说明该路口的交通参与者遵守秩序程度越高,违法率越低。

(6)交通事故层

​ 该指标层主要反映路口安全情况,现粗略地将事故类型分为机动车事故、非机动车事故及行人事故三种类型。

​ 1)机动车事故量

​ 该指标是指在路口处发生的认定原因为机动车的事故数量。

​ 2)非机动车事故量

​ 该指标是指在路口处发生的认定原因为非机动车的事故数量。

​ 3)行人事故量

​ 该指标是指在路口处发生的认定原因为行人的事故数量。

​ 4)路口综合事故量

​ 该指标是综合考虑机动车、非机动车和行人的事故数量。

​ 5)交通事故层状态指数

​ 该指数用于评价路口的交通安全程度,数值越高,说明该路口越安全,交通参与者发生事故率越低。

(7)路口综合状态指数

​ 该指标基于上述6个维度的状态指数,综合考察路口状态;指标越低,说明该路口的优化空间较大,表明感知设备层、数据质量层、运行状态层、信号控制层、交通违法、交通事故层某一个或几个存在短板,可进一步聚焦路口短板,提升路口综合状态。

​ 特别说明,本节主要说明路口多维度指标体系的构建思路,具体指标的选取可根据情况合理添加删除,以及深入细化。

3、智慧路口

路口所负载的设施设备,关联的交通数据也越来越多,通过建立路口多维度指标体系,构建数字路口;进而结合交警部门的业务应用,有效对路口关联数据进行有效管理和组织,从海量的交通数据中获取“智慧”,实现路口智慧化,如图4所示,从而有效服务交警客户当前交通拥堵治理、违法治理等业务,在实现路口智慧化的同时,促进交通管理向智能化快速发展。

img

​ 图4 智慧路口实现示意图

4、总结

在各大城市不断投入资金安装各种感知设备的同时,路口感知设备类型越来越多,有必要实现基于多源采集数据的路口交通指标标准化处理;通过建立路口多维度指标体系,一方面实现路口交通指标的标准化处理,一方面通过不同维度表征数字路口,为结合交警业务,深度挖掘交通数据“智慧”,打造智慧路口提供数据指标支持。

### 城市道路交叉口信号灯控制效果评估的研究 #### 1. 信号灯控制效果的核心指标 对于城市道路交叉口信号灯控制效果的评估,通常涉及以下几个核心指标:通行能力、延误时间、排队长度以及安全性。这些指标可以通过实地观测或仿真模拟获取数据并加以分析。例如,在高交通流量条件下,基于深度强化学习的算法可以显著减少车辆的平均延误时间,并降低交通事故发生率[^1]。 #### 2. 数据采集与处理技术 为了全面评估信号灯控制的实际效果,需依赖先进的数据采集手段和技术支持。这可能包括视频监控设备、地磁传感器、雷达检测器等多种方式。通过这些工具收集到的数据可用于计算上述提到的各项性能指标。值得注意的是,不同国家和地区由于驾驶行为习惯的不同,可能会对具体实施策略有所调整。比如在国外某些地区,严格限制交叉口处车速有助于提升整体交通安全水平;而在国内,则需要额外考虑如何应对普遍存在的加速抢行现象[^2]。 #### 3. 多元化评价体系构建 除了传统意义上的定量分析外,还可以引入定性的用户体验调查作为补充维度之一。例如询问行人关于过马路便捷程度的感受或者骑行者对自己权益保护情况的看法等等。另外,针对特殊群体(如老年人、残疾人)的需求也应该给予特别关注。在这方面,一些成功的实践案例展示了良好的示范作用。像广州市某个繁忙路口通过对非机动车辆行驶路径重新规划加上智能化管理措施相结合的办法取得了不错成效[^4]。 #### 4. 高级优化算法的应用前景展望 随着人工智能领域的发展进步,越来越多新型算法被应用于解决复杂场景下的动态调度难题之中。其中遗传算法因其强大的全局搜索能力和自适应调节机制而备受青睐,在寻找最佳配时方案方面展现出了巨大潜力[^3]。未来或许还能进一步探索将此类先进理论融入现有框架当中去的可能性 ,以便更好地服务于智慧城市建设和可持续发展目标达成之间找到平衡点。 ```python def evaluate_signal_control(traffic_data, safety_metrics): """ Evaluate the effectiveness of traffic signal control based on provided data. Args: traffic_data (dict): Dictionary containing various traffic flow and delay information. safety_metrics (list): List of metrics related to road safety improvements. Returns: dict: Summary report with key performance indicators analyzed. """ results = {} # Analyze throughput efficiency avg_delay_time = sum([d['delay'] for d in traffic_data]) / len(traffic_data) max_queue_length = max([d['queue'] for d in traffic_data]) # Assess safety enhancements accident_reduction_rate = calculate_accident_reduction(safety_metrics) results["average_delay"] = avg_delay_time results["maximum_queue_length"] = max_queue_length results["accident_reduction_percentage"] = accident_reduction_rate return results def calculate_accident_reduction(metrics_list): initial_count = metrics_list[0]['initial'] final_count = metrics_list[-1]['final'] reduction_percent = ((initial_count - final_count) / initial_count) * 100 return round(reduction_percent, 2) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值