复杂网络概述
1研究背景
通信网络、电力网络、生物网络、和社会网络等分别是通信科学、电力科学、生命科学、和社会学等不同学科的研究对象,而复杂网络理论所要研究的则是各种看上去互不相同的复杂网络之间的共性和处理它们的普适方法。对这些极其复杂的交互作用网络的结构和动力学的理解已成为21世纪生命科学的关键性研究课题和挑战之一。
复杂网络之所以复杂,不仅在于网络规模的巨大,网络结构的复杂,而且网络在时间、空间上都具有动态的复杂性,网络行为也具有复杂性。
2 定义
许多真实系统都可以用网络的形式加以描述,一个典型的网络是由许多节点与链接节点之间的边 组成的。节点代表系统中的个体,边则表示节点之间的作用关系。
如WWW网络可以看成是网页之间通过超链接构成的网络;Internet网络可以看作不同的计算机通过光缆链接构成的网络;科学家合作网络可以看作不同的科学家合作关系构成的网络;基因调控网络可以看作是不同的基因通过调控与被调控关系构成的网络。
3 研究方面
复杂网络的研究大致可以描述为三个密切相关但又依次深入的方面:
1) 大量的真实网络的实证研究,分析真实网络的统计特性;
2) 构建符合真实网络统计性质的网络演化模型,研究网络的形成机制和内在机理;
3) 研究网络上的动力学行为,如网络的鲁棒性和同步能力,网络的拥塞及网络上的传播行为等。
4 复杂网络相关概念
4.1社区结构
定义:整个网络是由若干个“社区”或“组”构成的,每个社区内部的结点间的连接相对非常紧密,各个社区之间的连接相对来说却比较稀疏[1][2]。
实例:如社会网络中的社区代表根据兴趣和背景而形成的真实的社会团体;引文网络中的社区代表针对同一主题的相关论文;万维网中的社区就是讨论相关主题的若干网站[3];而生物化学网络或者电子电路中的网络社区可以是某一类功能单元[4][5]。
算法:
社区结构的算法分为以下两大类:
1) 是基于图论的算法,比如K-L算法[6]、谱平分法[7][8]、随机游走算法[9]和派系过滤算法[10][11]等;近几年从其他不同的角度又提出了基于电阻网络性质的算法[14]、基于信息论的算法[15]、基于PCA的算法[16]和最大化模块度[17]的算法[18-23]等。
2) 层次聚类算法,如基于相似度度量的凝聚算法[2]和基于边介数度量的分裂算法[1][12][13]等。最近,Doreian和Mrvar提出了一种利用局部搜索划分符号网络社区结构的算法[24], Bo Yang等提出一种基于代理的启发式划分符号网络社区结构的算法(FEC)[25]。
4.2拓扑势
拓扑势的概念初步刻画了节点在拓扑位置上局域影响的作用。
刻画了在不同拓扑位置上节点产生的局域影响作用,能细分复杂网络中节点的重要性排序;建立了度和介数等衡量参数之外的重要指标,能合理有效地分析静态网络的一些特性[28][29]。