广度优先搜索是一种用于图的查找算法,可帮助回答两类问题:
1,从节点A出发,有前往节点B的路径吗?
2,从节点A出发,前往节点B的哪条路径最短?
从图解算法书中寻找朋友圈中有没有商人引出该算法:
from collections import deque
graph = {}
graph['you']=['alice','bob']
graph['alice']=['peggy']
graph['bob']=['anuj']
graph['peggy']=[]
graph['anuj']=[]
# search_queue = deque()
# search_queue += graph['you']
# print(search_queue)
# print(type(search_queue))
def person_is_seller(person):
return person[-1]=='y'
def search(name):
search_queue = deque()
search_queue += graph[name]
searched = []
while search_queue:
person = search_queue.popleft()
if not person in searched:
if person_is_seller(person):
print(person,'is a seller!')
return True
else:
search_queue +=graph[person]
searched.append(person)
return False
search('you')
但这里需要强调的是这里面队列的作用,主要是利用了队列的先进先出的特性,当一个状态向其他方向扩展时,依次将其放入队列中,再由这这些状态继续扩展,这样队列状态的取出便是按照层次的顺序,一层一层地遍历的,这才是广度优先搜索的的关键。
另外一个就是已经检查过的元素就不要再检查了,避免进入死循环。