PyG框架构建GCN、GAT、GraphSAGE模型

获取Cora数据集,查看训练、测试、验证集比例

from torch_geometric.datasets import Planetoid
​
# '''
# 下载报错,将所有data文件下载到本地
# https://github.com/kimiyoung/planetoid
# 将cora相关文件放入到raw文件中
# '''
​
dataset = Planetoid(root='./tmp/Cora',name='Cora')
print((dataset[0].train_mask).sum())
print((dataset[0].test_mask).sum())
print((dataset[0].val_mask).sum())
print(dataset[0])

获取模型

import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, SAGEConv, GATConv

构建GCN网络,训练 验证

class GCN_Net(torch.nn.Module):
    def __init__(self, features, hidden, classes):
        super(GCN_Net, self).__init__()
        self.conv1 = GCNConv(features, hidden)
        self.conv2 = GCNConv(hidden, classes)
    def forward(self, data):
        x, edge_index = data.x, data.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值