Datawhale集成学习 Task12 Blending集成学习算法

Blending的意思是“混合”,其作为算法也非常好理解,即将多种结果混合在一起。具体来说呢,Blending是Stacking的基础,分为两层,第二层以第一层的predict为数据进行预测。对于一般的blending,主要思路是把原始的训练集先分成两部分,比如70%的数据作为训练集,剩下30%的数据作为测试集。第一轮训练: 我们在这70%的数据上训练多个模型,然后去预测那30%测试数据的label。第二轮训练,我们就直接用第一轮训练的模型在这30%数据上的预测结果做为新特征继续训练。
在这里插入图片描述

在这里插入图片描述

一个最重要的优点就是实现简单粗暴,没有太多的理论的分析。但是这个方法的缺点也是显然的:blending
只使用了一部分数据集作为留出集进行验证,也就是只能用上数据中的一部分,实际上这对数据来说是很奢侈浪
费的。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值