Given a linked list, determine if it has a cycle in it. Follow up: Can you solve it without using extra space? /** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) : val(x), next(NULL) {} * }; */ class Solution { public: bool hasCycle(ListNode *head) { if (!head) return false; ListNode *slow=head, *fast=head; while (fast && fast->next) { fast = fast->next->next; slow = slow->next; if (fast == slow) return true; } return false; } }; 拓展: 给定一个单链表,只给出头指针h: 1、如何判断是否存在环? 2、如何知道环的长度? 3、如何找出环的连接点在哪里? 4、带环链表的长度是多少? 解法: 1、对于问题1,使用追赶的方法,设定两个指针slow、fast,从头指针开始,每次分别前进1步、2步。如存在环,则两者相遇;如不存在环,fast遇到NULL退出。 2、对于问题2,记录下问题1的碰撞点p,slow、fast从该点开始,再次碰撞所走过的操作数就是环的长度s。 3、问题3:有定理:碰撞点p到连接点的距离=头指针到连接点的距离,因此,分别从碰撞点、头指针开始走,相遇的那个点就是连接点。 4、问题3中已经求出连接点距离头指针的长度,加上问题2中求出的环的长度,二者之和就是带环单链表的长度 问题2的证明如下: 链表形状类似数字 6 。 假设甩尾(在环外)长度为 a(结点个数),环内长度为 b 。 则总长度(也是总结点数)为 a+b 。 从头开始,0 base 编号。 将第 i 步访问的结点用 S(i) 表示。i = 0, 1 ... 当 i<a 时,S(i)=i ; 当 i≥a 时,S(i)=a+(i-a)%b 。 分析追赶过程: 两个指针分别前进,假定经过 x 步后,碰撞。则有:S(x)=S(2x) 由环的周期性有:2x=tb+x 。得到 x=tb 。 另,碰撞时,必须在环内,不可能在甩尾段,有 x>=a 。 连接点为从起点走 a 步,即 S(a)。 S(a) = S(tb+a) = S(x+a)。 得到结论:从碰撞点 x 前进 a 步即为连接点。 根据假设易知 S(a-1) 在甩尾段,S(a) 在环上,而 S(x+a) 必然在环上。所以可以发生碰撞。 而,同为前进 a 步,同为连接点,所以必然发生碰撞。 综上,从 x 点和从起点同步前进,第一个碰撞点就是连接点。 拓展部分转自: http://blog.sina.com.cn/s/blog_725dd1010100tqwp.html