【stable diffusion】:秋叶大佬整合包安装全过程,保姆级教程

整合包对非技术出身的同学比较友好,因为秋叶大佬把相关的东西已经都整合好了,只需要点点点就行了。当然懂编程的同学就更没有问题了。

准备

为了保证AI绘画的效率,建议在本机安装Nvidia独立显卡,也就是俗称的N卡,并且显存要达到6G以上,6G只能出图,如果要做训练建议12G以上。推荐选择RTX40系列及以上的显卡型号,最低也要选择RTX30系列。如果你没有N卡,可以使用CPU进行图形计算,但是性价比较低,出图速度较慢。此外,还需要确保CPU性能足够高,并且搭配至少16G的内存。总的来说,如果只是进行简单的图形处理或者体验,可以使用CPU,但不适合搞AI绘画。

看到这里,有的同学可能会有点失望了,没有这么好的机器就玩不了AI绘画吗?别担心,我们还可以使用云主机,下一篇我会分享使用云主机的姿势。

安装前看自己显卡型号的方法:

1、电脑左下角点击WIndows窗口图标,然后点击“设置”。

2、在打开的窗口中,搜索“设备管理器”,找到后点击打开。

3、找到“显示适配器”,就可以看自己的显卡了。如果是Nvidia的显卡,就会有这几个字。我这个演示的电脑是不是N卡,所以只能以CPU的方式运行。

下载

所有需要的东西都放到盘盘里边了,大家自行下载即可:

pan.baidu.com/s/1Hvw8ptSv… 提取码: bmm1

为了方便大家搞AI绘画,这里边不仅包含了秋叶大佬的整合包,还有很多的大模型、Lora模型、ControlNet模型等等,总计大约有100多G,全部下载下来会很慢。

但是没必要都下载下来再安装,先把最后两个文件下载下来就行了,鉴于百度限速,可能也需要几个小时,大家耐心等待,磨刀不误砍柴工!

启动

下载完上边说的两个文件就可以启动。

1、安装驱动。这个整合包是由 .NET6 (就是一个软件基础平台)驱动的, 大家需要先安装“启动器运行依赖-dotnet-6.0.11.exe”这个文件。

安装过.NET6的同学可以跳过这一步,不懂的再安装一遍也没问题。

2、解压“sd-webui-aki-v4.zip”。自己选择一个磁盘,比如D盘,直接解压到D盘根目录就行了。然后进入解压后的文件夹 sd-webui-
aki-v4 。

双击“A启动器.exe”,它会自动下载一些最新的程序文件。我这里还弹出了“设置Windows支持长路径”,确定就可以了。

<
### 安装 Stable Diffusion 秋叶整合于 Linux 环境 尽管 Stable Diffusion 秋叶整合主要针对 Windows 用户设计,提供了极高的易用性便捷性[^1],但在 Linux 系统上也可以通过一些额外配置实现安装运行。以下是具体方法: #### 1. 准备工作 在 Ubuntu 或其他基于 Debian 的发行版中,确保系统已更新至最新状态: ```bash sudo apt update && sudo apt upgrade -y ``` 由于该整合本身并未提供官方的 Linux 版本支持[^2],因此需要手动适配环境。 #### 2. 安装 NVIDIA 显卡驱动 如果您的硬件设备配备有 NVIDIA GPU,则需安装对应的显卡驱动程序以启用 CUDA 支持。可以通过以下命令完成安装: ```bash sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt update sudo ubuntu-driver autoinstall ``` 完成后重启计算机以应用更改。 #### 3. 设置 Python 依赖项 Stable Diffusion WebUI 及其衍生项目通常依赖特定版本的 Python(推荐使用Python 3.8 至 3.10)。可以按照如下方式创建虚拟环境并安装所需库文件: ```bash sudo apt install python3-pip git -y pip install --upgrade pip git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui/ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 pip install -r requirements.txt ``` 这里特别注意 PyTorch 库的选择应匹配所使用的CUDA工具链版本号;上述例子假设采用的是 CUDA 11.7。 #### 4. 调整脚本兼容性 虽然原生Windows版本依靠.NET框架来简化操作流程[^3],但移植到Linux之后则不再适用这种方式。取而代之的是利用shell脚本来执行各项任务。打开`webui.sh`文件编辑其中的内容使其更贴合当前系统的特性: ```bash nano webui.sh ``` 修改后的启动指令可能类似于这样: ```bash #!/bin/bash source ~/miniconda3/etc/profile.d/conda.sh conda activate sd python ./launch.py --listen --port=7860 ``` 保存退出后再赋予可执行权限: ```bash chmod +x webui.sh ./webui.sh ``` 至此应该能够成功加载界面服务端口,默认监听地址为 `http://localhost:7860`. --- ### 注意事项 - 如果遇到性能瓶颈或者资源不足的情况,考虑调整模型精度参数比如FP16半浮点数计算模式降低内存占用率。 - 对于不熟悉命令行交互的新手来说整个过程可能会显得复杂繁琐些,建议多查阅相关文档资料逐步摸索学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值