【AI大模型面试真题】为什么说RLHF不是真正的RL?

前言

近年来,大语言模型(LLMs)的能力呈现爆炸式增长。伴随这一发展,人类反馈的强化学习(RLHF)成为了一种流行的模型优化方法,帮助模型更好地符合人类偏好,产生更有帮助且危害更小的文本。

然而,RLHF 中的"RL"(强化学习)容易引起误解:很多人想知道这些技术是否真的能像经典的强化学习智能体(例如 AlphaZero)那样,赋予 LLM 某种似乎"想要"赢得游戏的目标或意图。

在这篇文章中,我们将讨论以下几个有趣的问题:

  • RLHF(及相关方法)与经典 RL 有何不同

  • 为什么这些方法实际上并未赋予 LLM 真正的目标或意图

  • 为什么目前没有人在大规模上对 LLM 实施"真正的 RL"

  • 现有方法中,什么最接近于给 LLM 一个"目标"

  • 没有"目标驱动"的 LLM 会带来什么后果

通过理解这些细微差别,我们可以更清楚地认识 LLM 能做什么、不能做什么,以及原因何在。

1、RLHF与经典RL的区别

(1)什么是经典强化学习?

在经典 RL 设置中,你会看到:

  • 一个在环境中采取行动的智能体

  • 基于智能体的行动而改变状态的环境

  • 智能体根据行动获得奖励或惩罚,目标是在多个步骤中最大化长期累积奖励

关键特征:持续或周期性的交互。智能体探索多个状态,做出决策,观察奖励,并在一个持续的循环中调整其策略。

(2)RLHF 的工作机制

RLHF 是一个使用基于人类偏好数据训练的奖励模型来优化模型输出的工作流程。

通常包括:

  • 监督微调(SFT):首先在高质量数据上训练或微调基础语言模型

  • 奖励模型训练:收集输出对并询问人类更偏好哪一个,然后训练"奖励模型"来近似这些人类判断

  • 策略优化:使用类似强化学习的算法(通常是 PPO,近端策略优化)来调整 LLM 的参数,使其产生更受奖励模型青睐的输出

与经典 RL 的不同之处在于,这里的"环境"基本上就是一个单步文本生成过程加上一个静态奖励模型——没有延展的循环或持续变化的状态。

2、为什么 RLHF 不是真正的 RL?

主要区别如下:

(1)单步或少步优化

RLHF 中,LLM 为给定提示生成文本,然后奖励模型提供一个单一的偏好分数。

这更像是朝着人类偏好的单步策略梯度优化,而非在变化环境中完整的智能体循环。

这更接近于"一次性"评分,而不是智能体在时间维度上探索多步骤行动并获得环境反馈。

(2)主要离线或半离线特性

奖励模型通常是离线训练的,基于人类标注数据。

用于更新 LLM 策略的次数有限。

没有实时的、持续的环境循环供 LLM 探索并在线调整其策略。

(3)缺乏长期环境导向的目标

经典 RL 智能体会跟踪多个状态下的长期奖励。

相比之下,基于 RLHF 的 LLM 训练主要关注将即时文本输出调整为符合人类偏好。

There is no dynamic environment the LLMnavigates over many time steps.

(4)表面约束 vs 真实内部目标

RLHF 实际上是在塑造某些输出的概率分布——引导模型远离不期望的文本。

但模型并未在内部形成对产生这些输出的"想要"或"渴望";它仍然是一个生成下一个 token 的统计系统。

需要记住的是,无论是 RLHF、SFT 还是其他方法,LLM 的训练目标都不是形成真正的目标或意图!

从根本上说,LLM 是被训练来预测给定上下文的下一个 token。它们的"动机"纯粹是最大化正确下一个 token 的似然概率(由训练数据和后续微调信号定义)。

这里不存在主观意义上的想要或意图。我们常说 AlphaZero"想要"赢得象棋比赛,但这只是一种便利的说法。

在内部,AlphaZero 只是在最大化一个数学奖励函数——并不存在真实的欲望。

同样,经过 RLHF 调整的 LLM 也只是在最大化对齐奖励信号,而没有想要的内部状态。

3、RLHF vs IRL的比较

Subbarao Kambhampati 指出,"RLHF"某种程度上是一个用词不当,因为它结合了从人类判断中学习偏好或奖励模型(这在概念上更接近逆强化学习,或 IRL)与单步或少步策略优化——而不是经典 RL 中典型的长期迭代交互。

主要差异如下:

(1)逆强化学习(IRL)

经典形式中,智能体通过观察专家在动态环境中随时间推移的示范来推断奖励函数(In the classical IRL formulation, an agent infers a reward function by observing expert demonstrations in a dynamic environment over time.)

相比之下,RLHF 通常收集静态的成对比较(如"这两个模型输出中你更喜欢哪个?"),并训练奖励模型来模拟人类偏好。

其中也没有在不断演变的环境中的****多步专家轨迹**(There are no extended multi-step expert trajectories in an evolving environment.)**

(2)RL 中的偏好学习

在现代深度 RL 中,确实存在从轨迹展开的成对比较中学习奖励函数的方法。

但这些方法通常需要大量样本(例如,需要向人类询问很多次),许多研究论文不得不在受控任务中模拟人类响应。

(3)为什么 RLHF 也不是"经典 IRL"

即使 RLHF 在从人类数据学习偏好模型方面类似于 IRL。

但它不是分析专家随时间推移行为的经典场景。

RLHF 主要关注对最终或短序列输出的静态人类判断。

因此,RLHF 主要保持离线或近离线状态,这进一步限制了它与传统IRL设置的相似性。

4、CoT、 PRM 或多智能体工作流能否帮助解决这个问题?

(1)基于过程的奖励模型和思维链

与其仅基于最终输出(如问题的最终答案)提供奖励,基于过程的奖励模型可能会对中间推理步骤(思维链或 CoT)提供反馈。

这个想法是鼓励模型以更可解释、正确或符合特定标准的方式解释或展示其推理过程。

(2)这会使其成为"真正的 RL"吗?

并不会。即使你对中间步骤(如 CoT 解释)分配部分奖励,你仍然处于这样一个设置中:

  • 通常是将整个输出(包括推理)输入奖励模型

  • 获得一个奖励

  • 进行一步策略优化

你并不是在一个动态环境中,让 LLM 在同一回合中"尝试"部分推理步骤,获得反馈,调整,然后在开放式循环中继续。

因此,尽管 CoT/PRM 可能因为对中间步骤进行奖励或惩罚而给人多步 RL 的错觉,但实际上它仍然只是对单步(生成文本加推理)的离线或近离线策略调整,而不是经典 RL 中持续的智能体-环境循环。

(3)智能体工作流也不会神奇地创造意图

你可以在工作流中编排多个 LLM(例如,“系统 A 生成计划,系统 B 批评计划,系统 C 优化计划”),但从内部来看,每个 LLM 仍然只是基于下一个 token 的概率生成文本。

即使这样的多智能体设置可能表现出看似协调或有目的性的涌现行为,它也并未赋予任何单个模型内在或内部持有的目标。

为什么我们的多智能体 LLM 工作流常常表现出有意图的样子?

  • 人类天生会将心理状态投射到表现出看似有目的行为的系统上——这被称为"意图立场"

  • 但每个 LLM 智能体只是在响应提示

  • 每个智能体背后的思维链与个人欲望或驱动力不同;它只是多步反馈循环中更精细的提示-完成过程

因此,多智能体编排可能产生非常有趣的涌现任务解决能力,但 LLM 本身仍然不会产生"我想要这个结果"的动机。

5、为什么目前没有人用"真正的 RL"训练 LLM?

成本太高:

  • 大规模模型的经典 RL 需要稳定的交互环境

  • 需要海量计算资源来运行重复的回合(episode)

  • 对于当今数十亿参数的 LLM 来说,每个训练周期的前向传播次数都会贵得令人望而却步

缺乏环境定义:

  • 文本生成本质上不是一个"状态-动作转换"环境

  • 虽然可以尝试将其包装在类游戏模拟中,但定义多步文本交互的奖励结构并非易事

现有性能已经足够好:

  • RLHF 或 DPO(直接偏好优化)在许多用例中已经产生足够好的对齐效果

  • 从实用角度看,团队更倾向于使用更简单的离线方法,而不是构建一个复杂的RL流程,只为获得微小的收益却要付出巨大代价

6、什么是给 LLM 一个"目标"最接近的方法?

那么,什么是给 LLM 一个"目标"最接近的方法?目前,最接近于给 LLM 设定"目标"的方法可能是以下几种方案:

精心设计的提示工程:

  • 明确指出期望的目标和约束

  • 使用思维链(CoT)来引导推理过程

  • 设置角色扮演场景来框定行为范围

  • 但要记住:这仍然只是在提示层面上的引导,而不是模型内在的目标驱动

工具使用和规划:

  • 让 LLM 访问外部工具(如计算器、搜索引擎等)

  • 制定多步计划并执行

  • 通过 ReAct 等框架组织行动

  • 这种方法可以产生看似目标导向的行为,但实际上是通过提示模板和工具 API 的组合来实现的。

上下文学习(In-Context Learning):

  • 通过示例展示期望的行为模式

  • 利用少样本学习来适应特定任务

  • 在提示中包含任务相关的背景信息

专门的微调:

  • 在特定任务上进行监督微调

  • 使用特定领域的数据集

  • 结合任务特定的奖励信号

7、缺乏"目标驱动"LLM 的影响

(1)积极影响

可控的行为:

  • 模型行为更容易预测

  • 减少意外的目标追求

  • 更容易确保安全边界

更灵活的应用:

  • 可以根据需要调整行为

  • 更容易适应不同场景

  • 减少固定目标带来的局限性

(2)潜在挑战

任务持续性:

  • 难以维持长期目标

  • 可能在复杂任务中失去方向

  • 需要更多人工干预和指导

自主性限制:

  • 依赖明确的指令

  • 缺乏主动探索能力

  • 创造性可能受限

8、结论与展望

(1)关键要点

对本文的观点进行一个简单总结:

  • RLHF 和类似方法是有效的对齐工具,但与经典 RL 有本质区别

  • 目前的 LLM 本质上仍是预测下一个 token 的概率模型

  • "真正的 RL"在 LLM 训练中面临重大技术和资源挑战

  • 现有方法可以模拟目标导向行为,但不等同于真正的目标驱动

(2)未来展望

新范式的可能性:

  • 可能出现结合语言模型和真实 RL 的混合架构

  • 新型训练方法可能带来更接近"真实目标"的行为

实践建议:

  • 明智地使用现有工具

  • 理解当前技术的局限性

  • 根据具体需求选择合适的方法

研究方向:

  • 探索更高效的 RL 训练方法

  • 开发更好的奖励建模方式

  • 研究如何在保持安全的同时增加模型的自主性

最后

为了助力朋友们跳槽面试、升职加薪、职业困境,提高自己的技术,本文给大家整了一套涵盖AI大模型所有技术栈的快速学习方法和笔记。目前已经收到了七八个网友的反馈,说是面试问到了很多这里面的知识点。

由于文章篇幅有限,不能将全部的面试题+答案解析展示出来,有需要完整面试题资料的朋友,可以扫描下方二维码免费领取哦!!! 👇👇👇👇

在这里插入图片描述

面试题展示

1、请解释一下BERT模型的原理和应用场景。

答案:BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,通过双向Transformer编码器来学习文本的表示。它在自然语言处理任务中取得了很好的效果,如文本分类、命名实体识别等。

2、什么是序列到序列模型(Seq2Seq),并举例说明其在自然语言处理中的应用。

答案:Seq2Seq模型是一种将一个序列映射到另一个序列的模型,常用于机器翻译、对话生成等任务。例如,将英文句子翻译成法文句子。

3、请解释一下Transformer模型的原理和优势。

答案:Transformer是一种基于自注意力机制的模型,用于处理序列数据。它的优势在于能够并行计算,减少了训练时间,并且在很多自然语言处理任务中表现出色。

4、什么是注意力机制(Attention Mechanism),并举例说明其在深度学习中的应用。

答案:注意力机制是一种机制,用于给予模型对不同部分输入的不同权重。在深度学习中,注意力机制常用于提升模型在处理长序列数据时的性能,如机器翻译、文本摘要等任务。

5、请解释一下卷积神经网络(CNN)在计算机视觉中的应用,并说明其优势。

答案:CNN是一种专门用于处理图像数据的神经网络结构,通过卷积层和池化层提取图像特征。它在计算机视觉任务中广泛应用,如图像分类、目标检测等,并且具有参数共享和平移不变性等优势。

6、请解释一下生成对抗网络(GAN)的原理和应用。

答案:GAN是一种由生成器和判别器组成的对抗性网络结构,用于生成逼真的数据样本。它在图像生成、图像修复等任务中取得了很好的效果。

7、请解释一下强化学习(Reinforcement Learning)的原理和应用。

答案:强化学习是一种通过与环境交互学习最优策略的机器学习方法。它在游戏领域、机器人控制等领域有广泛的应用。

8、请解释一下自监督学习(Self-Supervised Learning)的原理和优势。

答案:自监督学习是一种无需人工标注标签的学习方法,通过模型自动生成标签进行训练。它在数据标注困难的情况下有很大的优势。

9、解释一下迁移学习(Transfer Learning)的原理和应用。

答案:迁移学习是一种将在一个任务上学到的知识迁移到另一个任务上的学习方法。它在数据稀缺或新任务数据量较小时有很好的效果。

10、请解释一下模型蒸馏(Model Distillation)的原理和应用。

答案:模型蒸馏是一种通过训练一个小模型来近似一个大模型的方法。它可以减少模型的计算和存储开销,并在移动端部署时有很大的优势。

11、请解释一下LSTM(Long Short-Term Memory)模型的原理和应用场景。

答案:LSTM是一种特殊的循环神经网络结构,用于处理序列数据。它通过门控单元来学习长期依赖关系,常用于语言建模、时间序列预测等任务。

12、请解释一下BERT模型的原理和应用场景。

答案:BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,通过双向Transformer编码器来学习文本的表示。它在自然语言处理任务中取得了很好的效果,如文本分类、命名实体识别等。

13、什么是注意力机制(Attention Mechanism),并举例说明其在深度学习中的应用。

答案:注意力机制是一种机制,用于给予模型对不同部分输入的不同权重。在深度学习中,注意力机制常用于提升模型在处理长序列数据时的性能,如机器翻译、文本摘要等任务。

14、请解释一下生成对抗网络(GAN)的原理和应用。

答案:GAN是一种由生成器和判别器组成的对抗性网络结构,用于生成逼真的数据样本。它在图像生成、图像修复等任务中取得了很好的效果。

15、请解释一下卷积神经网络(CNN)在计算机视觉中的应用,并说明其优势。

答案:CNN是一种专门用于处理图像数据的神经网络结构,通过卷积层和池化层提取图像特征。它在计算机视觉任务中广泛应用,如图像分类、目标检测等,并且具有参数共享和平移不变性等优势。

16、请解释一下强化学习(Reinforcement Learning)的原理和应用。

答案:强化学习是一种通过与环境交互学习最优策略的机器学习方法。它在游戏领域、机器人控制等领域有广泛的应用。

17、请解释一下自监督学习(Self-Supervised Learning)的原理和优势。

答案:自监督学习是一种无需人工标注标签的学习方法,通过模型自动生成标签进行训练。它在数据标注困难的情况下有很大的优势。

18、请解释一下迁移学习(Transfer Learning)的原理和应用。

答案:迁移学习是一种将在一个任务上学到的知识迁移到另一个任务上的学习方法。它在数据稀缺或新任务数据量较小时有很好的效果。

19、请解释一下模型蒸馏(Model Distillation)的原理和应用。

答案:模型蒸馏是一种通过训练一个小模型来近似一个大模型的方法。它可以减少模型的计算和存储开销,并在移动端部署时有很大的优势。

20、请解释一下BERT中的Masked Language Model(MLM)任务及其作用。

答案:MLM是BERT预训练任务之一,通过在输入文本中随机mask掉一部分词汇,让模型预测这些被mask掉的词汇。

由于文章篇幅有限,不能将全部的面试题+答案解析展示出来,有需要完整面试题资料的朋友,可以扫描下方二维码免费领取哦!!! 👇👇👇👇

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值