python数据分析常用图大集合

我们在做数据分析的时候,难免会用到图像来表示你要展示的东西,接下来写一下demo来表示一下各种图:

以下默认所有的操作都先导入了numpy、pandas、matplotlib、seaborn

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

数据源地址:github地址:https://github.com/mwaskom/seaborn-data

解压缩文件,拖入seaborn-data文件夹中

1、折线图

折线图可以用来表示数据随着时间变化的趋势

x = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019]
y = [5, 3, 6, 20, 17, 16, 19, 30, 32, 35]

  • Matplotlib
plt.plot(x, y)
plt.show()

  • Seaborn
df = pd.DataFrame({'x': x, 'y': y})
sns.lineplot(x="x", y="y", data=df)
plt.show()

2、直方图

直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,然后在每个小区间内用矩形条(bars)展示该区间的数值

a = np.random.randn(100)
s = pd.Series(a) 

  • Matplotlib
plt.hist(s)
plt.show()

  • Seaborn
sns.distplot(s, kde=False)
plt.show()
sns.distplot(s, kde=True)
plt.show()

3、垂直条形图

条形图可以帮我们查看类别的特征。在条形图中,长条形的长度表示类别的频数,宽度表示类别。

x = ['Cat1', 'Cat2', 'Cat3', 'Cat4', 'Cat5']
y = [5, 4, 8, 12, 7]

  • Matplotlib
plt.bar(x, y)
plt.show()

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值