炸裂!万亿规模市场,AI 大模型算法与应用商业模式深度剖析 2025

模型层:算法革新、性能成本优化与多元商业模式的交融

1 生成算法、预训练模型与多模态技术,助推 AIGC 强势爆发

AIGC 与过往 AI 技术的最大差异,在于从分析式 AI(Analytical AI)进阶为生成式 AI。分析式 AI 模型主要凭借对既有数据的分析、判断及预测来给予决策支撑,而生成式 AI 模型则是借由学习既有数据,创作出全新内容。

这一转变得益于先进的生成算法、强大的预训练模型以及创新的多模态技术,它们协同发力,推动 AIGC 迅猛发展、呈爆炸式增长。

AIGC 的快速崛起,离不开基础生成算法的持续创新与突破。诸如生成对抗网络(Generative Adversarial Network,GAN)、扩散模型(Diffusion Model)和 Transformer 等核心生成算法,为 AIGC 的发展筑牢了技术根基。

这些算法的持续进步,促使 AIGC 实现爆发,拓展了其在内容生成领域的应用潜能。
2014 年,伊恩·古德费洛提出的生成对抗网络(GAN)成为早期最著名的生成式模型,标志着生成式 AI 的重要里程碑。**
**

随之而来,诸如 DCGAN、Style-GAN、BigGAN 和 CycleGAN 等变种架构相继问世,这些发展不仅推动了 GAN 理论的深化,也为图像生成、视频生成和三维模型生成等领域提供了强大的工具,极大丰富了生成式 AI 的应用场景。

2017 年,Vaswani 等人提出的 Transformer 模型引入了自注意力机制,使得模型能够根据输入序列中的不同部分分配不同的注意权重,从而更有效地捕捉语义关系。

这一创新催生了众多变体,如 BERT、GPT 和 XLNet 等,这些模型在各自领域取得了显著成果,推动了自然语言处理等行业的发展。伴随着生成式算法的不断创新突破,AIGC 如今能够生成多种类型的内容和数据,包括文本、代码、图像、语音和视频物体等,展现了广泛的应用潜力。

表 1:主流生成算法模型

在这里插入图片描述

预训练模型的出现为 AIGC 技术带来了颠覆性的进步。尽管过去各种生成式模型层出不穷,但由于任务类型单一、使用门槛高、训练成本昂贵以及内容质量不足,难以满足复杂多变的应用场景。预训练模型,也称为基础模型或大模型,通过在大规模数据集上进行训练,学习到丰富的特征表示,展现出更强的泛化能力和深入的语言理解及内容生成能力。

这些模型具备通用特征学习、迁移学习、多任务学习和领域适应等关键特性,显著增强了 AIGC 的通用化能力,使同一模型能够高质量完成多种内容输出任务。通过在特定领域数据上进行微调,模型能够迅速适应并掌握新领域的特定特征,极大提升了其实用性和灵活性。

2018 年,谷歌推出了基于 Transformer 架构的自然语言处理预训练模型BERT,标志着人工智能领域进入了一个以大规模预训练模型参数为核心的新纪元。BERT 的核心创新在于其双向训练策略,能够同时考虑单词左侧和右侧的上下文信息,使得其在理解单词含义时更为精准。

通过在大量文本数据上的预训练,BERT 学习到了深层次的语言表示,这些表示可以迁移到多种下游 NLP任务中,如文本分类、问答系统和命名实体识别等。BERT 通过微调(Finetuning)进一步适应特定任务的需求,极大地提升了自然语言处理的效果和应用广度。

图 2:预训练模型 BERT 结构图

在这里插入图片描述

多模态技术的发展推动了 AIGC 内容的多样性,增强了模型的通用化能力

该技术使不同类型的数据(如文本、图像、音频和视频)能够互相转化和生成,从而使 AIGC 模型能够跨模态生成各种类型的内容。CLIP(ContrastiveLanguage-Image Pretraining)模型是 OpenAI 提出的一种典型多模态预训练模型。其核心思想是利用大规模的图像和文本数据进行自监督学习,使模型能够在没有明确标注的情况下理解和关联不同模态的数据。CLIP 能够将图像和文本映射到同一个向量空间,促进了不同模态数据的理解与关联,为文生图、文生视频等 AIGC 应用的快速发展奠定了基础。

一个典型的多模态大型语言模型(MLLM)可以抽象为三个核心模块:预训练的模态编码器(Modality Encoder)、预训练的大型语言模型,以及连接它们的模态接口(Connector)。类比于人类,模态编码器相当于接收和预处理光学/声学信号的人类眼睛和耳朵,而大型语言模型则像是理解并推理处理信号的人类大脑。在这两者之间,模态接口的功能是对齐不同的模态。以 GPT-4V 为代表的多模态大型语言模型在多模态任务中展现出了前所未有的能力。随着技术的不断进步,多模态模型将在更多领域发挥重要作用。

图 3:典型多模态大模型架构示意图

在这里插入图片描述

2. 性能与成本:大语言模型竞争的核心驱动力

***大语言模型的竞争主要集中在两个核心要素上:性能和成本*。**性能决定了模型能够处理的任务复杂度和准确性,而成本则影响模型的商业可行性和普及程度。这两者的平衡将直接影响大语言模型在市场上的竞争力与应用广度。

***硬件性能的提升与软件算法的创新共同推动了大语言模型的不断提升*。**在硬件方面,GPU 性能的增强显著提升了模型的训练和推理能力,得益于半导体工艺的进步和持续的 GPU 设计创新,这使得复杂任务的处理更快速高效。软件方面,创新算法如 Chinchilla 的最优缩放、人类反馈强化学习(RLHF)、推测解码(Speculative Decoding)和 Flash Attention 等,为大模型的发展注入了新的活力。

例如,Chinchilla 通过合理分配模型大小和训练数据量,优化了有限计算资源下的模型训练;Llama2 利用 RLHF 方法,确保输出更符合用户期望;推测解码实现了推理速度的显著提升;而 Flash Attention 则通过优化注意力机制,提高了 GPT 模型的训练速度。这些因素的结合使得大语言模型在性能和效率上不断取得突破。

图 4:大模型训练性能不断提升
在这里插入图片描述

***随着训练成本的不断下降,AIGC 的应用正变得越来越普及*。**赖特定律(Wright’s Law)表明,当一种产品的累计产量翻倍时,其单位成本将下降一个固定百分比。在 AIGC 领域,尤其是大模型训练中,GPU 硬件性能的提升和算法优化对成本降低起到了关键作用。

根据 ARK 的分析,随着硬件技术的不断进步,AI 相对计算单元(RCU)的成本预计每年将降低 53%,而模型算法的增强预计每年可使训练成本降低 47%。预计到 2030 年,硬件和软件的融合将使AIGC 训练成本以每年 75%的速度下降。这一显著的成本降低将推动 AIGC 技术的普及与经济性,从而促进 AIGC 的广泛应用和创新。

图 5:AIGC 训练硬件成本趋势
在这里插入图片描述

*图 6:AIGC 训练软件成本趋势*

在这里插入图片描述

***随着 LLM 公司之间竞争的加剧,AIGC 的推理成本正迅速降低*。**AIGC 模型在处理输入和输出时,其计算资源消耗与输入输出的数据量成正比,费用计算基于输入输出的 Token 数量,这种计费方式为不同用户提供了灵活性。

以 OpenAI 为例,在过去两年里,它将 API 访问成本降低了 99%。具体来看,GPT-3 的 API 推理成本从 2021 年的每千 Token 0.06 美元降至 2022 年的 0.02美元,降幅达 66%。到 2023 年,GPT-3.5 Turbo 的 API 推理成本与 2021 年相比下降了 86%。同时,GPT-4 Turbo 的 API 推理成本与 GPT-4-32k 相比降低了92%,其成本甚至低于一年前的 GPT-3。

值得注意的是,这一推理成本的降低是在提供更长的上下文、更低的延迟和更新知识截止日期的情况下实现的。微软 CEO 纳德拉认为,与摩尔定律类似,AI 领域也存在 Scaling Law(尺度定律),在 AI 时代,衡量单位是“每美元每瓦特的 Token 数”。这种竞争态势将进一步推动 AIGC 技术的普及与应用。

图 7:GPT API 推理成本快速下降

在这里插入图片描述

3.AIGC 市场快速增长推动多元化商业模式与竞争格局演变

AIGC 大模型公司正在通过多元化商业模式开拓收入渠道,目前主要集中在订阅服务和 API 接入两种模式。

**1. *订阅服务*:**用户支付月费或年费以享受持续的服务。例如,OpenAI 的ChatGPT Plus 订阅服务目前每月收费 20 美元,预计在 2024 年底提价至 22 美元。截至 2024 年 9 月,ChatGPT Plus 已拥有 1000 万订阅用户。

**2. *API 接入模式*:**企业将 API 服务整合至其应用程序中,并根据使用情况付费。OpenAI 的 API 定价因模型和使用情况而异,通常根据输入输出的 Tokens 进行差异化定价。

此外,OpenAI 还与 Microsoft Azure 合作,为大规模企业提供定制化的专用实例,价格层次丰富,满足不同企业的需求。这种多元化的商业模式不仅为AIGC 公司带来了稳定的收入来源,也使其能够更好地服务于不同类型的用户和市场。

除了订阅和 API 接入,大模型公司还在积极探索其他多种商业模式,包括:

**1. *企业定制服务*:**大模型公司为特定企业需求提供个性化解决方案,深度集成特定应用场景或行业需求,帮助企业实现更高效的业务流程。

**2. *软件授权*:**这种模式允许公司出售技术使用权,特别适合那些需要在本地部署解决方案的企业。这使得客户能够根据自身的安全和合规要求来管理和使用模型。

**3. *内容许可*:**大模型公司与机构合作,获得内容许可以训练模型。这种合作可以增加训练数据的多样性,提高模型的表现。

**4. *合作伙伴关系*:**建立与大型科技公司的紧密合作关系,例如 OpenAI与 Microsoft 的合作,涉及技术集成和新产品共同开发。这种合作不仅为大模型公司带来额外收入,还能够提升其技术能力和市场竞争力。通过这些多元化的商业模式,大模型公司能够更灵活地适应市场需求,拓宽收入来源,提高自身的市场竞争力。

***随着越来越多的企业认识到 AIGC 技术的潜力,B2B 市场的需求预计将持续***增长。****根据 OpenAI 的收入构成,2023 年其 B2C 和 B2B 业务各占一半。预计到2024 年,OpenAI 的收入将达到约 37 亿美元,2025 年将大幅增至 116 亿美元。

这一增长主要得益于 ChatGPT 订阅用户的增加以及企业 API 和定制解决方案的使用。B2C 市场规模预计将达到 100 亿至 200 亿美元,但市场占有率预计不足10%。B2B 市场规模预计高达 2000 亿美元以上,且市场占有率超过 90%。这一比例显示出 B2B 服务在整体 AIGC 市场中的主导地位。

*图 8:AIGC 大模型长期潜在市场与收入结构预测*

在这里插入图片描述

***随着 AIGC 技术的快速发展,大模型平台市场正在经历显著增长*。**AIGC 技术的不断进步和应用领域的持续扩展,促使越来越多的企业采用大模型平台来构建和扩展其应用程序。2022 年底 ChatGPT 的公开发布,成为推动行业增长的重要催化剂。

根据 Market.US 的预测,全球大语言模型市场规模将从 2023年的 45 亿美元增长到 2033 年的 821 亿美元,复合年增长率为 33.7%。中国市场同样展现出强劲的增长潜力。前瞻产业研究院的预测显示,中国大语言模型市场规模将从 2023 年的 147 亿元增长到 2029 年的 1186 亿元,复合年增长率为 41.6%。

*图 9:全球大语言模型市场规模预测*

在这里插入图片描述

图 10:中国大语言模型市场规模预测

在这里插入图片描述

***在大语言模型市场,OpenAI 凭借其卓越的技术成为市场的领头羊*。**根据IoT Analytics 的分析,OpenAI 在推出 ChatGPT 短短两个月内便实现了月活跃用户数突破 1 亿,成为有史以来用户增长速度最快的消费级应用程序。凭借ChatGPT 的成功,OpenAI 在大语言模型市场中以 39%的市场份额处于领先地位。

紧随其后的是科技巨头微软(30%)、亚马逊(8%)和谷歌(7%)。此外,一些领先的 AI 创业公司,如 AI21 Labs、Anthropic 和 Cohere 等,也占据了一定的市场份额。

图 11:大语言模型市场份额(2023 年)

在这里插入图片描述

互联网科技巨头正通过持续的技术创新和产品整合,努力追赶并挑战****OpenAI 在大语言模型市场的领导地位。微软将 OpenAI 的功能集成到其多种产品中,包括 Azure、Office 365 和 Bing。Azure AI 平台提供了强大的工具集,允许客户选择不同的大语言模型,例如 OpenAI 的模型或 Llama 2,并提供定制化的 AI 应用程序,增强了数据安全性。亚马逊的 Bedrock 专注于提供平台服务,支持客户访问多家 AI 公司的大语言模型,帮助他们更加灵活地构建和扩展生成式 AI 应用程序。谷歌的 Gemini 是一系列多模态模型,它被融入谷歌的产品体系,能够处理和组合各种数据类型。此外,谷歌的 Vertex AI 是基于云计算的 AI 平台,融合了最新的技术和能力,可以帮助企业快速实现 AI 应用的开发和部署。

4.应用层:技术创新推动应用市场发展和传统行业变革

4.1 AIGC 技术加速 ToC 与 ToB 领域的创新与多元化应用

AIGC 技术在面向消费者(ToC)和面向企业(ToB)领域都有广泛的应用场景。随着技术的持续演进和迭代,这些应用场景和商业模式正不断拓展和演变。

***在面向消费者领域,AIGC 技术满足了个人的日常生活需求,涵盖了如**Chatbot、社交、游戏、教育和内容创作等多个场景*。**在社交娱乐方面,AIGC技术使普通用户能够以较低的门槛参与内容创作,激发创作灵感,用户可以通过 AIGC 创作画作、文本、歌曲等。在教育领域,AIGC 技术被用于开发个性化的学习工具和课程,帮助学生更高效地学习。此外,在搜索引擎和内容推荐方面,AIGC 技术利用自然语言生成和机器学习等技术,快速生成新闻报道和文章,并提供个性化的推荐服务。

***在面向企业领域,AIGC 技术为企业客户提供了多种解决方案,帮助提高效**率、降低成本、创新产品,并增强市 场竞争力*。**在办公领域,AIGC 技术能够提升工作效率和质量,激发创意和乐趣,创造更便捷、高效和创新的办公体验。在内容生产和媒体方面,AIGC 技术提供高效工具,提升内容产出效率和质量,降低生产成本。在广告营销领域,AIGC 技术通过内容创新、制作成本节约和流程效率提升,推动营销效果的增强。在游戏开发方面,AIGC 技术应用于智能 NPC、场景建模和 AI 剧情等功能,提升游戏的创新性和玩家体验。在药物研发领域,AIGC 技术在辅助诊断和药物研发过程中发挥着重要作用。

表 12:常见的 AIGC 应用场景

在这里插入图片描述

AIGC 应用产品种类繁多,其中 Chatbot 占据领先地位。根据 AI 产品榜的数据,全球市场上,ChatGPT 的月访问量已突破 30 亿次,使其成为全球第十一大网站。从产品分布来看,AIGC 赛道涵盖了多个领域,包括 Chatbot、内容创作、翻译、搜索、教育和知识管理等。在国内市场,前十的应用主要以Chatbot 为主,同时 AI 搜索的占比也在逐步提升。

*表 7:全球* *AIGC* *应用排名(**2024* *年* *9* *月)*

在这里插入图片描述

4.2 AIGC 技术驱动电子设备革新,大模型引领手机、汽车与机器人智能化创新

AIGC 技术正引领一场新的科技革命,大模型在传统硬件设备中的应用日益广泛,为智能手机、汽车、机器人等多个产业链带来了全新的机遇。这些技术的融合不仅提升了设备的智能化水平,还推动了各行业在功能和效率上的创新,为用户提供更加个性化和高效的体验。

***智能手机通过引入大模型资源,显著增强了用户的操作体验*。**利用 API 模式,智能手机可以集成 ChatGPT 等先进的大模型,实现个性化内容创造、智能语音助手和个性化推荐等方面的重大突破。AIGC 技术能够根据用户的个性化需求,自动生成文本、图片、视频等多种内容,广泛应用于社交媒体、个人表达和商业领域。借助 API 与大模型的连接,智能语音助手变得更智能、更人性化,能够理解上下文,提供更流畅自然的对话,并执行更复杂的任务。此外,AIGC 还可以通过 API 实时生成个性化内容推荐,例如个性化新闻、主动购物推荐和应用建议,为用户带来更加丰富和个性化的服务体验。

***AIGC 技术正以其革命性的力量推动手机硬件和操作系统重构,引发手机产***业链生态的深刻变革。****随着手机算力的显著提升和大模型的压缩与优化,操作系统有望采用边缘计算与本地推理相结合的创新方式,在高效手机上实现轻量级推理,同时将大部分计算任务放在云端。未来,更多的应用程序将通过调用AIGC API 来实现内容生成、推荐系统和交互功能,从而减少传统手动编写内容的依赖,使开发者能够更专注于核心业务逻辑的构建。这种变革将带来更个性化的交互、更智能的任务管理以及实时生成的个性化内容。操作系统能够生成适应用户个人风格和需求的 UI 设计、动态壁纸和主题,可以根据用户的使用习惯自动安排任务,提供更加定制化服务。

*图 12:AIGC 推动大模型与电子设备智能化升级*

在这里插入图片描述

在汽车领域,AIGC 技术正在推动自动驾驶技术的发展。AIGC 涵盖了多个关键方面,包括训练数据生成、情境理解、路径规划、实时学习和用户交互等。通过这些技术的融合,自动驾驶系统能够更有效地应对复杂的道路环境,理解驾驶者的需求,并不断提升其智能化水平,为自动驾驶技术的发展提供重要支撑。特斯拉的 FSD 12 在感知能力、决策算法和用户交互等方面取得了显著提升,能够在特定地区和情况下支持更高级的自动驾驶功能。这为未来的完全自动驾驶奠定了更坚实的基础,使汽车不仅能够自动驾驶,还能更好地适应驾驶者的个性化需求和动态道路状况。

***AIGC 技术加速了人形机器人在智能化和多样化发展上的进步*。**借助 AIGC,人形机器人不仅能执行简单任务,还能主动学习和理解用户需求,提供个性化服务。AIGC 使人形机器人能够自然地理解和生成对话内容,模拟人类沟通方式,从而在交流中为用户提供更真实和智能的反馈。此外,AIGC 还使人形机器人具备生成和识别视觉内容的能力,这提高了它们在教育、娱乐、医疗等领域的视觉理解能力。人形机器人能够通过 AIGC 不断从环境中学习,并生成复杂场景的应对策略,例如在制造业中优化生产流程,或在医疗领域辅助医生进行诊断。这种动态适应能力使人形机器人在多变的环境中更加灵活。随着AIGC 的发展,人形机器人不仅能够服务于多种场景,还能适应不断变化的需求,推动其从单一功能向智能化、个性化助手的演变。

图 13:特斯拉 FSD 自动驾驶路径规划

在这里插入图片描述

图 14:2024 年全球主流人形机器人

在这里插入图片描述

4.3 AIGC 应用市场正处于发展初期,竞争格局多元化且持续演变

根据彭博情报(Bloomberg Intelligence)的预测,随着各类 AIGC 应用的爆发式增长,AIGC 应用市场的规模预计将从 2022 年的 18.60 亿美元增长到2032 年的 6618.14 亿美元,年均复合增长率达到 80%。在这一市场中,AI 广告预计将占据最大市场份额,而药物研发、网络安全和 IT 服务市场的增速最快。同时,AIGC 在科技领域的投入也将显著增加。信息技术硬件、软件、服务及广告等领域的 AIGC 支出预计将从 2022 年总支出的 1%增长到 2032 年的12%。这一增长反映了 AIGC 在各个行业中的广泛潜力,尤其是在加速产品开发、自动化流程以及增强决策支持方面的应用。

图 15:2022-2032 年 AIGC 应用市场规模

在这里插入图片描述

AIGC 市场正处于一个充满机遇与挑战的初期阶段。尽管近年来 AIGC 技术取得了显著进步,应用场景不断增加,但整体市场仍在探索和形成中。随着新模型和应用层出不穷,企业和开发者不断寻求更高效、更智能的解决方案,以满足不断变化的市场需求。AIGC 的应用场景从内容创作、营销扩展到医疗、教育等多个领域,不同的行业对 AIGC 的需求和实现方式各不相同,企业正在探索最佳的整合方式。除了大型科技公司,许多初创企业也纷纷进入这一领域,推出各种创新的 AIGC 应用,进一步加剧市场竞争。随着技术的成熟和应用的深入,预计未来几年 AIGC 应用市场将迎来更大的发展和变革。

AIGC 应用市场正呈现出多元化的竞争格局,发展态势持续演变。随着越来越多的初创企业和中小型公司进入市场,这些企业致力于推出针对特定行业的AIGC 产品,如医疗、广告、金融和教育等领域的定制化应用工具。根据 IoTAnalytics 的分析,2023 年埃森哲以 6%的市场份额在 AIGC 应用市场保持领先地位,并将 AIGC 技术整合到其咨询服务中,帮助客户实现数字化转型。IBM、Capgemini 和 Cognizant 紧随其后,展现了这些公司在推动 AIGC 技术应用方面的持续努力。未来,随着市场需求的不断增长,这些公司的竞争格局可能会进一步变化,带来更多创新和机遇。

图 16:AIGC 应用市场份额(2023 年)

在这里插入图片描述

5.1 业务建议

*图 17:AIGC 产业链布局策略*

在这里插入图片描述

**(1)伦理道德的风险。**可能加剧社会不平等,侵犯隐私,存在算法偏见和道德争议,若处理不当可能引发法律问题。

**(2)技术缺陷的风险。**算法和模型可能存在缺陷,导致生成内容质量低或被恶意利用,进而造成信息泄露及人类对技术的过度依赖。

**(3)监管与法律的风险。**各国可能出台新的监管政策,企业需时刻关注并遵循,以避免法律风险。

(4)商业化不确定的风险。技术瓶颈和应用局限可能影响商业化进程,给企业带来风险。

(5)市场竞争加剧的风险。行业内竞争激烈,技术更新迅速,可能影响行业的健康发展。

**(6)宏观经济波动的风险。**宏观经济波动可能影响投资决策和市场需求,从而影响 AIGC 行业的整体发展。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

图片

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!

在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

这份完整版的AIGC全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值