大模型LLM入门到进阶 | 基准测试 Benchmark(三)什么是CV(计算机视觉)?计算机视觉基准测试

一、CV的Benchmark

1. 什么是CV(计算机视觉)?

计算机视觉(Computer Vision, CV)是指计算机利用摄像机、图像传感器等设备获取图像或视频,并通过复杂的算法对这些图像或视频进行处理和分析,以实现对图像或视频中的物体、场景以及其属性的理解和识别的技术领域。

  • 图像处理:对图像进行预处理、增强、恢复、变换等操作,以提高图像的质量和可用性。
  • 目标检测与识别:能够识别和分类图像中的物体、场景或者特定的图案。例如,面部识别、物体识别等。
  • 视频分析:对视频进行分析和处理,包括视频监控、运动检测、人脸识别等。

2. 计算机视觉(CV)基准测试:

如ImageNet、COCO等,用于评估AI模型在图像分类、目标检测等任务上的性能。

1)ImageNet

ImageNet是一个由斯坦福大学李飞飞等人创建的大规模图像数据库,它包含了超过1400万张样例图片,这些图片被分为27个大类和超过2万个小类。ImageNet因其庞大的规模和丰富的类别而成为计算机视觉领域的重要资源。

1. 计算机视觉研究和开发:ImageNet提供了一个大规模的图像数据库,可用于训练和评估图像分类、目标检测和图像识别等计算机视觉任务的算法和模型。

2. 模型性能评估:作为一个广泛使用的基准测试数据集,ImageNet可用于评估不同模型在图像分类任务上的性能。通过在ImageNet上进行比较,可以更准确地评估和比较不同模型之间的优劣,并推动模型的改进和发展。

3. 深度学习教育:ImageNet的广泛使用也使得它成为深度学习教育中重要的资源之一。许多教育机构和在线课程使用ImageNet作为实践项目,帮助学生理解和应用深度学习算法,并培养他们在计算机视觉领域的技能。

2)COCO(Microsoft Common Objects in Context)

COCO数据集是一个大型的、丰富的物体检测、分割和字幕数据集。它由微软于2014年出资标注,旨在推动计算机视觉领域在复杂场景下的理解和分析能力。COCO数据集包含超过33万张图片,其中超过20万张图片有详细的标注信息,涵盖了91类目标。

1. 目标检测和图像分割:COCO数据集主要用于评估目标检测和图像分割等任务的性能。它提供了丰富的标注信息,包括目标的边界框、分割掩码等,使得研究人员能够更准确地评估模型在这些任务上的表现。

2. 评估标准IOU指标:目标检测和图像分割的评估标准主要基于IOU(Intersection over Union)指标。IOU表示预测框或分割掩码与真实框或掩码之间的重叠程度,是评估模型性能的重要指标之一。


二、如何学习大模型?

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费


如有侵权,请联系删除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值