生成式人工智能确实是跨行业的关键技术;因此,理解生成式人工智能的核心概念对于任何科技界及其他领域的专业人士来说都至关重要。以下综合指南涵盖了 25 个必须了解的生成式人工智能术语,这些术语将为您提供清晰的定义、实际示例和其他资源,以加深您的知识。无论是准备面试、从事人工智能项目,还是随时了解这个快速变化的领域的最新动态,掌握这些术语都能为您在生成式人工智能方面打下坚实的基础。
1. 生成模型(Generative Model)
- 定义:一种从学习模式中生成新数据点的人工智能模型。
- 示例:生成式预训练 Transformer (Generative Pre-trained Transformers,GPT) 根据输入提示生成类似人类的文本。
2. Transformer
- 定义:一种使用自注意力机制来处理和生成序列(如文本或图像)的神经网络架构。
- 示例:BERT 是一个用于问答和文本分类等任务的 Transformer 模型。
3. 潜在空间(Latent Space)
- 定义:生成模型映射数据的多维空间,允许它们学习并生成变化。
- 示例:在图像生成中,相似的图像在潜在空间中彼此靠近。
4. GAN(生成对抗网络,Generative Adversarial Network)
- 定义:一种人工智能,将两个神经网络(一个生成器和一个鉴别器)相互对抗,以创建逼真的数据。
- 示例:GAN 生成看起来逼真但不属于真人的面孔。AI 换脸。
5. 自动编码器(Autoencoder)
- 定义:学习压缩和重建数据的神经网络,通常用于降维和去噪等任务。
- 示例:自动编码器用于去除损坏图像中的噪声。
6. 扩散模型(Diffusion Models)
- 定义:学习逆转噪声添加过程以从噪声中生成详细且连贯的数据的模型。
- 示例:扩散模型在 DALL-E 2 中用于从随机噪声中生成高质量图像。
7. 提示工程(Prompt Engineering)
- 定义:设计输入提示以优化模型生成的输出的过程。
- 示例:修改 GPT-4 中的输入提示以生成更简洁的摘要。
8. 零样本学习(Zero-Shot Learning)
- 定义:模型利用来自其他任务的知识来执行未明确训练的任务的能力。
- 示例:GPT-3 无需在翻译数据集上进行专门训练即可执行翻译。
9. 小样本学习(Few-Shot Learning)
- 定义:模型仅使用少量示例即可学习任务的能力,从而最大限度地减少对大量训练数据的需求。
- 示例:GPT-3 可以进行微调,以使用最少的输入样本以特定风格书写。
10. 强化学习(Reinforcement Learning)
- 定义:一种学习范式,其中人工智能代理通过与环境交互来学习做出决策,以最大化累积奖励。
- 示例:AlphaGo 使用强化学习,通过与自己进行数百万次对弈来掌握围棋游戏。
11. 变分自动编码器 (Variational Autoencoder,VAE)
- 定义:一种自动编码器,通过在其潜在空间表示中引入随机性来学习生成新数据。
- 示例:VAE 用于生成新面孔并在不同面部特征之间平滑过渡。
12. 自监督学习(Self-Supervised Learning)
- 定义:一种学习技术,其中模型从数据中生成自己的标签,从而减少对标记数据集的依赖。
- 示例:BERT 通过屏蔽句子中的单词并在训练期间预测它们来使用自监督学习。
13. Tokenization
- 定义:将文本拆分成更小的单元(例如单词或子单词)的过程,以便模型更轻松地处理。
- 示例:文本输入在输入 GPT-4 进行处理之前被标记成单词。
14. 集束搜索(Beam Search)
- 定义:一种搜索算法,它扩展多个潜在的标记序列以在解码过程中生成最可能的序列。
- 示例:集束搜索用于机器翻译以生成连贯的文本输出。
15. 迁移学习(Transfer Learning)
- 定义:在一个任务上使用预训练模型,然后针对另一个任务对其进行微调的过程,通常使用的数据较少。
- 示例:在一般语言任务上进行预训练后,在情绪分析任务上对 BERT 进行微调。
16. 语言模型(Language Model)
- 定义:预测自然语言中单词序列概率的模型,有助于生成或理解文本。
- 示例:GPT-4 是一种能够为各种应用生成连贯文本的语言模型。
17. 人工智能中的偏见(Bias in AI)
- 定义:由于训练数据或算法存在偏见,人工智能系统倾向于产生有利于或歧视某些群体的结果。
- 示例:在有偏见的历史数据上训练的人工智能驱动的招聘系统中存在性别偏见。
18. GPT(Generative Pre-trained Transformer)
- 定义:一种大规模语言模型,基于对大量文本语料库的预训练和微调生成类似人类的文本。
- 示例:GPT-4 生成文章、故事和对用户查询的详细响应。
19. 困惑度(Perplexity)
- 定义:一种衡量语言模型预测给定单词序列的能力的指标,困惑度越低,性能越好。
- 示例:比较 GPT-3 和 GPT-4 的困惑度以评估它们的文本生成质量。
20. 自然语言处理 (Natural Language Processing,NLP)
- 定义:人工智能的一个领域,专注于通过自然语言实现计算机与人类之间的交互,包括翻译和情感分析等任务。
- 示例:NLP 模型用于对客户评论进行情感分析。
21. 神经网络(Neural Network)
- 定义:一种受人脑神经元网络启发的计算系统,由多层相互连接的节点组成,用于图像识别和语言处理等任务。
- 示例:卷积神经网络 (CNN) 用于识别图像中的物体。
22. 训练数据(Training Data)
- 定义:用于训练 AI 模型的数据,让它们从示例中学习,提高它们识别模式和做出预测的能力。
- 示例:ImageNet 等大型图像数据集用于训练 AI 模型以进行图像分类任务。
23. 注意力机制(Attention Mechanism)
- 定义:神经网络中的一种方法,可帮助模型专注于输入序列中最相关的部分,从而提高机器翻译和文本生成等任务的性能。
- 示例:注意力机制允许模型在语言之间进行翻译时专注于句子中的重要单词。
24. Epoch
- 定义:在机器学习模型的训练过程中,对整个训练数据集进行一次完整的遍历。
- 示例:对神经网络进行 10 个时期的训练,以确保它能够正确学习而不会过拟合。
25. 多模态人工智能(Multimodal AI)
- 定义:可以同时处理和生成来自多种模态(例如文本、图像和音频)的数据的人工智能。
- 示例:CLIP 处理图像和文本以生成图像的标题。
请记住,生成人工智能的掌握是一步一步实现的。
最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】