一、前言
在数据采集和逆向工程领域工作了几年,我主要负责数据的收集、处理和分析。在这个过程中,我接触到了各种数据处理技术,但总感觉自己的工作缺少了一些创新和挑战。一次偶然的机会,我了解到了RAG模型,并且产生了兴趣。
二、决定挑战自我
在深入了解RAG模型后,我意识到这是一个很有前景的方向。但我也看到了挑战,在招聘市场上的要求普遍是硕士以上学历,而我只有本科学历。尽管如此,我还是决定挑战自我,投身于RAG模型的研究和应用。
三、从零开始学习
-
系统学习:最开始我通过网络我收集到了大量的学习资源,但是我发现自己学习总是不够自觉,同时也不够系统,不知道该怎么循序渐进的去学习,遇到的很多问题也没有办法解决,这样的学习效率太慢了,于是报名参加了在线的学习课程,搭配这些学习资源,跟着老师进行快速系统的学习。
-
论文阅读:除了系统的学习,我还会针对RAG模型,阅读了大量的论文和教程,理解其背后的原理和实现方法。
-
项目实战:学习最重要的是实践,我会跟了老师去完成一些项目实战,自己也会通过GitHub找到了一些RAG模型的开源项目,通过这些项目动手实践,逐步巩固学到的知识,积累足够的实战经验,为找工作做准备。
四、学习交流
- 我积极参加行业会议和研讨会,与业内专家交流,了解最新的研究动态和行业需求。
- 同时加入了相关的线上社群,与同行交流学习心得,分享项目经验。
- 通过这些活动,我也认识一些在志同道合的朋友,他们为我提供了宝贵的建议和职业发展的机会。
经过一年不断的努力,我积累了足够的知识和经验。也成功通过面试找到了一份满意的工作。虽然找到了工作,但我不认为这是我的最终的目标,我还是会继续去学习,不断提升自己的能力。
五、总结一些建议
- 明确目标:确定你要转行的方向,了解该领域的市场需求和发展趋势。
- 系统学习:针对性地学习相关知识,包括理论基础和实践技能。
- 项目经验:通过实际项目来锻炼自己的能力,积累经验。
- 学习交流:积极参加行业活动,构建自己的职业网络。
- 持续进步:保持学习的热情,不断更新知识,适应行业的变化。
最后我也给大家免费分享一整套大模型的学习资源
,包括:大模型学习路线、大模型学习书籍、视频教程、实战学习、面试题等等,有需要的朋友可以自行领取
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包
,有需要的朋友可以微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】
学习大型模型是一项挑战性的任务,而在这个过程中,优质全面的学习资料是我们掌握核心知识的关键。与此同时,老师的指导和学习伙伴的互助也发挥着不可替代的作用。
全面的学习资源库能够为我们提供理论支撑和实践指导,而有经验的老师可以帮助我们少走弯路,快速成长。此外,与志同道合的学习伙伴共同探讨、交流,能够激发我们的学习热情,形成良好的学习氛围,共同进步。
因此,如果你也想学习大模型,那就快来加入我们吧!