刚刚MiniMax发布了MiniMax-01,简单测试了效果,感觉不错。于是又把它的技术报告看了一下。这种报告看多了,就会多一个毛病,越来越觉得自己也能搞一个。
这篇文章我觉得最有意思的一句是对数据质量的强调“低质量数据在训练超过两个epoch后性能显著下降,而高质量数据可以有效地训练多达四个epoch”
MiniMax-01系列模型通过创新的Lightning Attention和专家混合(Mixture of Experts, MoE)架构,实现了在长上下文处理上的突破性进展。
Paper:MiniMax-01: Scaling Foundation Models with Lightning Attention
论文链接:https://filecdn.minimax.chat/_Arxiv_MiniMax_01_Report.pdf
Github地址:https://github.com/MiniMax-AI/MiniMax-01
使用地址:https://hailuoai.com/
一、引言
近年来,大型语言模型(LLM)和视觉语言模型(VLM)在知识问答、复杂推理、数学、编程和视觉语言理解等任务上取得了显著进展。然而,大多数模型的上下文窗口长度通常在32K到256K token之间,这在实际应用中往往显得捉襟见肘。无论是处理一本专业书籍、协助整个编程项目,还是通过多示例学习最大化上下文学习的潜力,现有的上下文长度都显得不足。
过去两年中,上下文窗口的扩展主要依赖于更强大的GPU和更好的I/O感知的softmax注意力实现。然而,进一步扩展这些窗口面临着巨大的挑战,这源于Transformer架构固有的二次计算复杂度——随着长度的增加,计算需求远远超过硬件能力的提升速度。为了应对这一挑战,研究人员提出了多种方法来减少注意力机制的计算复杂度,包括稀疏注意力、线性注意力、长卷积、状态空间模型和线性RNN等。尽管这些方法在理论上具有潜力,但在商业规模的模型中应用有限。
MiniMax-01的目标是构建一个与领先商业模型性能相当,但上下文窗口长度提升一个数量级的模型。这一雄心勃勃的目标需要在网络架构、数据和计算之间找到平衡。MiniMax-01采用了混合架构,结合了闪电注意力和softmax注意力,并通过专家混合(MoE)架构最大化参数和计算能力,最终实现了在单台机器上处理超过100万token的能力。
二、模型架构
MiniMax-01的架构设计旨在在有限的资源下实现最佳性能,并更好地处理长序列。为了实现这一目标,模型采用了专家混合(MoE)方法,并尽可能使用线性注意力(Linear Attention)代替传统的softmax注意力。以下是对模型架构的详细解析。
2.1 专家混合(MoE)
专家混合(Mixture of Experts, MoE)是一种通过将多个前馈网络(FFN)专家组合在一起,每个token被路由到一个或多个专家的架构。这种设计不仅增强了模型的扩展性,还提高了计算效率。MiniMax-01的MoE架构包含32个专家,总参数量达到4560亿,每个token激活的参数量为459亿。
在MoE的训练过程中,每个专家都有一个容量限制,指定其可以处理的最大token数量。一旦达到容量,任何额外的token将被丢弃。为了确保负载平衡,MiniMax-01引入了一种全局路由策略,通过同步不同专家并行组(EP)中的token分布,减少了token丢弃率,从而提高了训练的稳定性。
2.2 线性注意力(Linear Attention)
线性注意力(Linear Attention)通过“右积核技巧”将传统的二次计算复杂度转化为线性复杂度,显著降低了长序列处理的计算负担。具体来说,线性注意力通过递归更新键值矩阵的乘积,避免了重复计算整个注意力矩阵,从而在推理过程中保持了恒定的计算复杂度。
MiniMax-01采用了Lightning Attention,这是一种I/O感知的线性注意力实现。Lightning Attention通过分块计算避免了因果语言建模中的累积求和操作,从而实现了理论上的线性复杂度。具体来说,Lightning Attention将注意力计算分为块内计算和块间计算两部分,块内计算使用左积,块间计算使用右积。这种分块策略确保了整体计算复杂度保持线性。
Lightning Attention的核心创新在于其分块技术。通过将查询(Q)、键(K)和值(V)矩阵沿行维度划分为多个块,Lightning Attention能够在每个块内独立计算注意力分数,从而避免了全局累积求和操作。这种设计不仅提高了计算效率,还使得模型能够处理更长的序列。
2.3 混合架构
MiniMax-01的最终架构结合了线性注意力和softmax注意力,每7个线性注意力层后跟随一个softmax注意力层。这种混合架构不仅提升了模型的推理能力,还在长上下文任务中表现出色。
具体来说,MiniMax-01的架构遵循Transformer风格,每个块包含一个通道混合器(注意力块)和一个特征混合器(MLP块)。通道混合器有两种类型:Lightning Attention和softmax注意力。特征混合器则是一个包含多个前馈网络(FFN)的MoE。为了确保MoE块的负载平衡,MiniMax-01提出了一种新的负载平衡策略,称为全局路由器(Global Router),该策略旨在保持训练的稳定性。
在MiniMax-01的最终架构中,线性注意力和softmax注意力机制以结构化模式集成。具体来说,每7个线性注意力层后跟随一个softmax注意力层,总共有80层。每个注意力模块由64个头组成,每个头的维度为128。softmax注意力层采用组查询注意力(GQA),组大小为8。旋转位置嵌入(RoPE)应用于一半的注意力头维度,基础频率设置为10,000。模型的隐藏大小配置为6144,每层包含32个专家,采用top-2路由策略。每个专家内的前馈网络隐藏维度为9216。
2.4 模块消融实验
为了验证MoE架构中模块选择的有效性,MiniMax-01进行了两组消融实验:
- Lightning Attention与softmax注意力的比较:
在28亿参数的MoE模型中,每8个连续层中的前7层用Lightning Attention替换softmax注意力。实验结果表明,替换部分softmax注意力层可以提高大多数基准测试的准确性。
- 前层归一化与后层归一化的比较:
MiniMax-01在93亿激活参数的模型上进行了实验,比较了前层归一化(PreNorm)和后层归一化(PostNorm)的效果。实验结果表明,PostNorm在所有评估指标上均优于PreNorm。
通过这些实验,MiniMax-01进一步验证了其架构设计的有效性,确保了模型在长上下文任务中的优异表现。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】