大模型论文 | LLMEmb: 基于LLM的序列推荐嵌入生成器

作者:香港城市大学、西安交通大学 刘启东

今天跟大家分享一篇来自西安交通大学、香港城市大学、腾讯优图实验室天衍研究中心、南方科技大学和西湖大学的论文,该论文已被AAAI接收。这篇文章提出了一种新颖的基于LLM的序列推荐推荐嵌入生成器,名为LLMEmb。

论文地址:https://arxiv.org/abs/2409.19925
代码链接:https://github.com/Applied-Machine-Learning-Lab/LLMEmb

1. 简介

当前,序列推荐系统(Sequential Recommender Systems, SRS)广泛应用于电子商务和短视频平台等场景。然而,现有的SRS中存在着严重的长尾问题。长尾问题在推荐系统中指大量低流行度(长尾)物品难以被有效推荐的现象,导致用户惊喜度降低、卖家利润减少和系统整体受损。这种现象主要体现在两个方面:首先,用户难以发现新的、有价值的物品,推荐体验变得单一,无法满足个性化需求;其次,低流行度物品销售量低,卖家收益受损,甚至可能被迫下架,影响整个市场的多样性。此外,长尾问题还会导致系统整体受损,用户满意度下降,卖家流失,最终影响整个推荐系统的价值。如图(a)所示,柱状图显示了大部分物品的交互频率都很低,呈现明显的长尾分布,但是常用的SRS模型SASRec对于这些物品的推荐效果较差。

我们发现SRS的长尾问题是由其有偏的物品嵌入分布造成的。如图(b)所示,SASRec中低流行度物品的嵌入点分布稀疏且距离较远,说明其嵌入质量较差。相比之下,大语言模型(LLM)通过文本特征(如标题)捕捉物品之间语义关系,有希望成为一个无偏的物品嵌入生成器。图(c)显示了LLaMA生成的物品嵌入的分布,这些嵌入点更均匀地分布,这促使我们开发一个基于LLM的生成器来生成更高质量的嵌入。然而,现有的基于LLM的SRS方法存在两个主要挑战:(i) 语义差距:LLM2X采用通用的LLM来生成物品嵌入。虽然这些嵌入可以包含语义,但它们并不针对推荐领域。为了解决这个问题,像SAID和TSLRec这样的方法提出微调开源LLM,以更好地与推荐任务对齐。然而,这些方法仍然局限于语言建模或类别预测,忽视了推荐领域中用属性区分物品的关键作用。(ii) 语义损失:如图所示,为了将LLM嵌入进一步适配协同过滤SRS模型,现有方法通过PCA等方法进行降维,并降维的嵌入直接使用到SRS模型中。然而,大幅度的降维和持续的训练会导致LLM嵌入中原始语义丰富性的显著损失,从而限制了它们的有效性,尤其是对于长尾物品。

2. 方法

2.1 Overview

图中展示了我们提出的LLMEmb的训练和推理过程,该嵌入生成器由一个LLM和一个适配器组成。对于训练过程,设计了两个阶段分别对LLM和适配器进行训练。第一阶段称为监督对比微调(SCFT),目标是微调通用LLM,以提高其根据不同属性区分物品的能力。具体来说,一个物品的文本提示由其属性组成,通过随机删除一定比例的属性将其增强为成两个副本。然后,通过对比不同物品的嵌入来微调LLM。微调过后的LLM能够生成更适合推荐任务的LLM嵌入,包含物品的语义信息。第二阶段称为推荐适应训练(RAT),涉及训练一个适配器,将LLM嵌入转换为最终的物品嵌入,使其适合推荐模型。最后,这些物品嵌入被输入到SRS模型中,并通用的推荐损失函数进行训练。在推理阶段,LLMEmb将提前生成所有物品嵌入。这些预先计算好的嵌入将替换SRS模型的原始嵌入层,从而避免了推理过程中LLM带来的巨大推理开销。

2.2 SCFT

SCFT主要通过对比微调LLM,使其具有通过识别属性的语义来区分物品的能力。该过程主要包含三个关键的步骤:Prompt构建、数据增强和对微调

Prompt构建:我们将物品的每一个属性都使用文本形式表示,比如“Attribute is value"。我们将这一段文本作为一个meta prompt,那么每个物品的prompt就是由这样的多个meta prompt构成的。

数据增强:我们微调LLM的目的是使其能够通过属性的语义信息来区分不同的物品,从而学习到推荐领域的信息。因此我们将同一个物品丢弃掉一部分属性的两个副本作为一对正样本,不同的物品作为负样本。具体构造副本的过程如下式所示:

对比微调:构建好正负样本后,我们将物品prompt输入到LLM中,并将LLM最后一层的所有token embedding进行平均池化作为物品的表征,即。利用物品表征构建对比学习损失函数。

2.3 RAT


推荐适配训练RAT的目的是使LLM生成的物品表征能够学习到推荐的协同过滤信号。其次,由于LLM嵌入的维度过大,也需要将其转换适合SRS维度的嵌入。因此RAT包含了三个步骤:嵌入转换、适配训练和协同对齐。

嵌入转换:之前的方法通常直接使用PCA对LLM嵌入进行降维,但是这一做法会显式损害原本LLM嵌入中含有的语义信息。因此本文提出使用一个可微调的转换器,将LLM嵌入转换为最终的物品嵌入。

适配微调:这一步为了将协同过滤信号注入到生成的嵌入当中,使用正常的SRS损失函数对适配器进行进一步的训练。

协同对齐:由于在适配微调中只有一小部分的参数是可训练的,容易造成过拟合的问题。因此提出将生成的物品嵌入与一般的SRS嵌入进行对齐,缓解训练上的困难。

3. 实验

3.1 实验设置

我们在实验中使用了数据集Yelp,Beauty和Fashion数据集

为了验证方法的通用性,我们结合了三个常用的SRS模型进行实验:GRU4Rec, SASRec和Bert4Rec 此外,我们广泛地对了长尾序列推荐和基于LLM的序列推荐模型:MELT, LLM2X, SAID和TSLRec。

3.2 整体实验结果

LMEmb在三个数据集上的整体和长尾性能均优于所有竞争者,尤其是在长尾物品上表现突出。TSLRec 通常表现不佳,因为它在使用LLM时仅采用物品ID而不是文本信息。尽管SAID和LLM2X也能为所有SRS模型带来提升,但它们仍然逊色于LLMEmb,尤其是在长尾物品上。这种比较表明,LLMEmb可以更好地保持原始LLM嵌入中的语义关系。

3.3 消融实验

消融实验验证了LLMEmb各个设计模块的有效性:未进行微调的LLM生成的嵌入性能较差,证明了弥补通用 LLM与推荐任务之间语义差距的必要性。移除可训练的Adapter后性能下降,表明Adapter在转换LLM嵌入维度方面的有效性。移除协同对齐损失后性能下降,证明了协同对齐在优化过程中的有效性。

3.4 嵌入可视化

t-SNE可视化结果表明,SAID可以通过引入LLM嵌入获得更均匀的分布,但由于语义损失问题,它仍然根据物品的流行度进行聚集。相比之下,LLMEmb获得的嵌入分布更均匀,这证明了LLMEmb优于其他方法。

4. 总结

LLMEmb是一种新颖的基于LLM的生成器,用于为序列推荐生成物品嵌入。为了使LLM具备识别物品的能力,我们设计了一种监督对比微调方法。然后,为了避免语义损失并注入协同信号,我们提出了推荐适应训练来更新可训练的Adapter。最后,训练好的LLM和Adapter构成了LLMEmb,可以生成最终的物品嵌入。我们在三个真实世界数据集上进行了实验,并验证了LLMEmb的有效性。


5. 如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值