吴恩达机器学习随笔之正则化,归一化 正则化:预防过拟合,对参数w做范式处理,使得矩阵W变得稀疏,就是将数据随机的忽略一部分,将会导致过拟合的数据,随机的消除一部分。有dropout正则化。 归一化:统一输入数据特征的方差,代价函数更加的对称,使得梯度下降寻找最小值变得更加的简单。 解决梯度消失或梯度爆炸的方法:选择更适合的初始化参数w,b。