吴恩达深度学习随笔之正则化,归一化

吴恩达机器学习随笔之正则化,归一化

正则化:预防过拟合,对参数w做范式处理,使得矩阵W变得稀疏,就是将数据随机的忽略一部分,将会导致过拟合的数据,随机的消除一部分。有dropout正则化。
归一化:统一输入数据特征的方差,代价函数更加的对称,使得梯度下降寻找最小值变得更加的简单。
解决梯度消失或梯度爆炸的方法:选择更适合的初始化参数w,b。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值