最长公共子序列,最长公共子串,最长上升序列 动态规划
1.力扣1143 最长公共子序列
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
若这两个字符串没有公共子序列,则返回 0。
示例:
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace”,它的长度为 3。
解题思路
暴力解法:可以通过枚举两个字符串str1,str2的全部非空子序列,然后依次比较得出结果。一个长度为n的字符串的非空子序列共有2n-1种(每个位置的字符要么在子串要么不在,排除所有字符都不在序列中的情况,共有2n-1种),设str1.length=n,str2.length=m,则比较两个字符串的全部子序列需要用一个双重循环,时间复杂度为O(2n * 2m)=O(2m+n)。时间复杂度很高,在枚举各个子串时出现了很多重复,可以考虑使用动态规划思想。
动态规划:首先要判断动态规划思想是否适用本问题,即本问题是否具有最优子结构和重叠子问题性质。对于最有子结构的证明可用反证法:设{a1,a2,…,an}是str1,str2的最长公共子序列,若将str1,str2中的第一个等于a1的字符删去,则{a2,a3,…,an}是str1,str2删去第一个等于a1的两个串的最长公共子序列。若存在有更长的公共子序列,如{b1,a2,a3,…,an},那么对于原来的str1,str2的最长公共子序列的解应该是{b1,a1,a2,a3,…,an}与原来的条件相悖,则可证明本问题最优子结构的性质。重叠子问题的是显而易见,如暴力枚举时str1,str2会枚举到ac与ace后者会重新比较ac。
用动态规划解题最重要的便是定义状态和状态转移方程,然后最常见的便是填写一个(二维)数组,最后从数组中得出答案。本题我们可以定义一个二维数组dp[N][N],其中N>=max(str1.length,str2.length),dp[i][j]为状态,定义为str1[0…i]与str2[0…j]的最长公共子序列,注意下标左右均为闭区间。状态转移方程为:
d
p
[
i
]
[
j
]
=
{
dp[i-1][j-1]+1 if (str1[i]==str2[j]) (注意边界条件)
max(dp[i-1][j],dp[i][j-1]) if(str1[i]!=str2[j])
dp[i][j]= \begin{cases} & \text{dp[i-1][j-1]+1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if (str1[i]==str2[j]) (注意边界条件)}\\ & \text{max(dp[i-1][j],dp[i][j-1]) \ \ if(str1[i]!=str2[j])} \end{cases}
dp[i][j]={dp[i-1][j-1]+1 if (str1[i]==str2[j]) (注意边界条件)max(dp[i-1][j],dp[i][j-1]) if(str1[i]!=str2[j])
二维数组填写时从上到下从左到右即可,最后答案为dp[str1.length-1][str2.length-1]
题解代码
class Solution {
public:
int dp[1001][1001];
int longestCommonSubsequence(string text1, string text2) {
int len1=text1.length();
int len2=text2.length();
for(int i=0;i<len1;i++){
for(int j=0;j<len2;j++){
dp[i][j]=0;
}
}
if(text1[0]==text2[0]){
dp[0][0]=1;
}else{
dp[0][0]=0;
}
//给第一行第一列符值,即添加围墙,防止越界,减少判断
for(int i=1;i<len1;i++){
if(text1[i]==text2[0]){
dp[i][0]=1;
}else{
dp[i][0]=dp[i-1][0];
}
}
for(int j=1;j<len2;j++){
if(text1[0]==text2[j]){
dp[0][j]=1;
}else{
dp[0][j]=dp[0][j-1];
}
}
/*
状态的定义:dp[i][j]表示str1[0....i]与str2[0....j]的最长公共子序列,注意下标左右均为闭区间。
状态转移方程:
dp[i-1][j-1]+1 str1[i]==str2[j]
dp[i][j]=
max(dp[i-1][j],dp[i][j-1]) str1[i]!=str2[j]
*/
for(int i=1;i<len1;i++){
for(int j=1;j<len2;j++){
if(text1[i]==text2[j]){
dp[i][j]=dp[i-1][j-1]+1;
}else{
dp[i][j]=dp[i-1][j]>dp[i][j-1]?dp[i-1][j]:dp[i][j-1];
}
}
}
return dp[len1-1][len2-1];
}
};
2.力扣718. 最长重复子数组,最长公共子串
题目描述
给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。
示例:
输入:
A: [1,2,3,2,1]
B: [3,2,1,4,7]
输出:3
解释:
长度最长的公共子数组是 [3, 2, 1] 。
解题思路
暴力解法可以通过枚举两个字符串str1,str2的全部非空子串,然后依次比较。一个长度为n的字符串的非空子串共有1+2+3+…+n=(n+1)*n/2,设str1.length=n,str2.length=m,则比较两个字符串的全部子串需要用一个双重循环,时间复杂度为O(n2 * m2)。
动态规划本问题问题同样具有最优子结构和重叠子问题性质,本文不再做证明。对于两个字符串,我们还可以使用一个二维数组来记录和表示状态。本题中状态定义为:dp[i][j]定义为nums1[0…i]与nums2[0…j]的最长公共子数组(其实和子串一样),且公共子数字(子串)的结尾为nums1[i],nums2[j]。因为本题要求的子数字(子串)在原数字中必须的连续的,所以将状态定义为包含nums1[i],nums2[j]的子串,本质上算是两个串的公共后缀序列。所以状态方程定义为:
d
p
[
i
]
[
j
]
=
{
dp[i-1][j-1]+1 if (str1[i]==str2[j]) (注意边界条件)
0 if(str1[i]!=str2[j])
dp[i][j]= \begin{cases} & \text{dp[i-1][j-1]+1 \ \ if (str1[i]==str2[j]) (注意边界条件)}\\ & \text{0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if(str1[i]!=str2[j])} \end{cases}
dp[i][j]={dp[i-1][j-1]+1 if (str1[i]==str2[j]) (注意边界条件)0 if(str1[i]!=str2[j])
二维数组填写时从上到下从左到右即可,填写数组同时记录最大值,因为最后答案不一定为dp[str1.length-1][str2.length-1]
题解代码
class Solution {
public:
int dp[1001][1001];
int findLength(vector<int>& A, vector<int>& B) {
int lenA=A.size();
int lenB=B.size();
for(int i=0;i<lenA;i++){
for(int j=0;j<lenB;j++){
dp[i][j]=0;
}
}
//给第一行第一列添加围墙,防止后续
for(int i=0;i<lenB;i++){
if(A[0]==B[i]){
dp[0][i]=1;
}
}
for(int i=0;i<lenA;i++){
if(A[i]==B[0]){
dp[i][0]=1;
}
}
//填写数组
int ans=0;
for(int i=1;i<lenA;i++){
for(int j=1;j<lenB;j++){
if(A[i]==B[j]){
dp[i][j]=dp[i-1][j-1]+1;
}else{
dp[i][j]=0;
}
if(dp[i][j]>ans){
ans=dp[i][j];
}
}
}
return ans;
}
};
3.力扣300. 最长上升子序列
题目描述
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
解题思路
暴力解法:可以通过枚举数组nums的全部非空子序列,然后依次判断是否为升序序列并记录子序列长度。一个长度为n的数组的非空子序列共有2n-1种,判断一个序列是否为升序序列的时间复杂度为O(n),所以总的时间复杂度为O(2n *n)。时间复杂度很高,在枚举各个子串时出现了很多重复,可以考虑使用动态规划思想。
动态规划本题中可以使用一个一维数组来记录状态,状态定义为dp[i]表示nums[0…i]中包含nums[i]的最长上升子序列,注意这里与上题一样都是包含nums[i]。状态转移方程为:
dp[i]=max(dp[j])+1, 其中0≤j<i且num[j]<num[i]
题解代码
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int len=nums.size();
if(len<1) return 0;
int* dp=new int[len];
//初始化,全部定义为1,因为单个数字是长度为1的上升子序列
for(int i=0;i<len;i++) dp[i]=1;
int ans=1;
int temp;
for(int i=1;i<len;i++){
temp=1;
for(int j=0;j<i;j++){
if(nums[i]>nums[j]){
temp=temp>(dp[j]+1)?temp:(dp[j]+1);
}
}
dp[i]=temp;
if(dp[i]>ans){
ans=dp[i];
}
}
return ans;
}
};