leetcode 1143.最长公共子序列 (动态规划)

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

输入:text1 = "abcde", text2 = "ace"

输出:3  

解释:最长公共子序列是 "ace",它的长度为 3。

示例 2:

输入:text1 = "abc", text2 = "abc"

输出:3

解释:最长公共子序列是 "abc",它的长度为 3。

示例 3:

输入:text1 = "abc", text2 = "def"

输出:0

解释:两个字符串没有公共子序列,返回 0。

提示:

1 <= text1.length <= 1000

1 <= text2.length <= 1000

输入的字符串只含有小写英文字符。

 

解析:https://leetcode-cn.com/problems/longest-common-subsequence/solution/chao-xiang-xi-dong-tai-gui-hua-jie-fa-by-shi-wei-h/

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int len1 = text1.size();
        int len2 = text2.size();
        if(len1==0 || len2==0)
            return 0;
        vector<vector<int>> dp(len1+1,vector<int> (len2+1,0));
        
        for(int i=1;i<=len1;++i)
            for(int j=1;j<=len2;++j)
            {
                dp[i][j] = max3(dp[i-1][j],dp[i][j-1],dp[i-1][j-1]+(text1[i-1]==text2[j-1]));//注意text1下标是i-1
            }
        return dp[len1][len2];
    }
    
    int max3(int i,int j,int k){
        return max(i,max(j,k));
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值