windows下VS安装CUDA环境配置

CUDA安装见:https://blog.csdn.net/Ang_go/article/details/122329715
本文内容均在已安装VS和CUDA情况下,如需安装教程,请自行搜索。

windows下VS安装CUDA环境配置

一.CUDA环境配置

1.此电脑->属性->高级系统设置->环境变量->系统变量
在系统变量中新建5个新内容(如图所示):
1.变量名: CUDA_SDK_PATH
变量内容:C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.2
v10.2指下载版本文件夹,请导航至自己下载版本的文件夹中,下同

2.变量名: CUDA_LIB_PATH
变量内容:%CUDA_PATH%\lib\x64

3.变量名: CUDA_BIN_PATH
变量内容:%CUDA_PATH%\bin

4.变量名: CUDA_SDK_BIN_PATH
变量内容:%CUDA_SDK_PATH%\bin\win64

5.变量名: CUDA_SDK_LIB_PATH
变量内容:%CUDA_SDK_PATH%\common\lib\x64在这里插入图片描述
2.在用户变量的path中新建4个新内容(如图所示):

%CUDA_LIB_PATH%
%CUDA_BIN_PAHT%
%CUDA_SDK_BIN_PAHT%
%CUDA_SDK_LIB_PATH%

在这里插入图片描述
3.测试:win+R,输入cmd,打开命令行,输入 set cuda,显示如下内容,若无显示,请重启,显示如下内容即为1,2步成功,才可进行此步
在这里插入图片描述

切换如下目录,v10.2指下载版本文件夹,请导航至自己下载版本的文件夹中,下同

cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite

运行deviceQuery.exe

deviceQuery.exe

在这里插入图片描述

显示如下结果,最后显示Result=PASS,即为成功!
在这里插入图片描述
在这里插入图片描述

VS中配置CUDA

1.VS新建一个空项目,打开属性管理器
下图1位置,新建一个*.props文件,命名为CUDA_debug_x64在这里插入图片描述
2.右键 刚建的CUDA_debug_x64->属性,如下图
在这里插入图片描述3.VC++目录->包含目录中添加

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include

VC++目录->库目录中添加

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\lib\x64

在这里插入图片描述
4.仍然是上一步属性中 ->链接器->输入->附加依赖项,添加下述内容(见图)

cublas.lib
cublasLt.lib
cuda.lib
cudadevrt.lib
cudart.lib
cudart_static.lib
cufft.lib
cufftw.lib
curand.lib
cusolver.lib
cusparse.lib
nppc.lib
nppial.lib
nppicc.lib
nppicom.lib
nppidei.lib
nppif.lib
nppig.lib
nppim.lib
nppist.lib
nppisu.lib
nppitc.lib
npps.lib
nvblas.lib
nvgraph.lib
nvml.lib
nvrtc.lib
OpenCL.lib

在这里插入图片描述
🆗!!

<think>好的,用户之前询问了关于Visual Studio 2019 Professional的离线安装方法,现在他们的问题是“vs 2019 生成依赖项添加cuda”。我需要先理解用户的需求。他们可能在安装CUDAVS2019时遇到了问题,或者在配置项目时不知道如何添加CUDA相关的依赖项。 首先,用户可能是开发人员,正在使用VS2019进行CUDA编程,但不知道如何正确配置项目。或者他们在编译CUDA项目时遇到错误,需要添加相应的依赖项。需要确定“生成依赖项”具体指的是项目配置中的依赖项,还是构建过程中需要的库和工具。 接下来,我需要考虑CUDAVS2019的兼容性。确保用户安装CUDA版本支持VS2019,因为不同版本的CUDA可能支持不同的VS版本。例如,CUDA 10.1支持VS2019,而旧版本可能需要更新。用户可能需要先确认CUDA版本是否兼容,并正确安装CUDA Toolkit。 然后,配置VS项目中的CUDA设置。在项目属性中,需要添加包含目录、库目录以及附加依赖项。用户可能不熟悉如何在VS中添加这些路径和库文件,需要详细说明步骤,特别是针对CUDA的特定路径,如$(CUDA_PATH)/include和$(CUDA_PATH)/lib/x64。 另外,用户可能没有正确配置生成自定义步骤中的CUDA C/C++,导致项目无法识别.cu文件。需要指导他们启用CUDA C/C++的生成规则,确保编译器正确处理CUDA代码。 还有,环境变量的问题。安装CUDA后,是否自动设置了环境变量,或者是否需要手动添加。如果用户的环境变量没有正确配置,可能导致链接错误或找不到库的情况。 此外,用户可能在编译时遇到特定的错误,例如缺少cudart.lib等,这时候需要检查库文件是否被正确引用,以及平台是否匹配(x64 vs Win32)。需要提醒用户注意平台选择,并确保所有配置的一致性。 测试部分,用户可能不知道如何验证CUDA是否配置成功,提供一个简单的测试代码示例和编译运行步骤会很有帮助。同时,常见问题如路径错误、版本不兼容、平台不匹配等,需要列出解决方案,帮助用户自行排查。 总结来说,用户需要的是在VS2019中正确配置CUDA开发环境的步骤,包括安装CUDA Toolkit、项目配置、环境变量检查以及常见问题解决。需要分步骤详细说明,确保用户能够逐步操作,避免遗漏关键细节。同时,考虑到用户可能遇到的典型问题,提前给出解决方案,减少他们的困扰。</think>以下是针对 **Visual Studio 2019 添加 CUDA 生成依赖项**的完整指南,涵盖环境配置、项目设置和常见问题解决: --- ### **1. 前置条件验证** #### **CUDA 版本兼容性** - 确认安装CUDA Toolkit 支持 VS2019(如 CUDA 10.1+),可通过[NVIDIA 官方文档](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)查询兼容性。 - 安装 CUDA Toolkit 时勾选 **"Visual Studio Integration"** 选项。 --- ### **2. 项目配置步骤** #### **方法 1:新建 CUDA 项目(推荐)** 1. 打开 VS2019,选择 **文件 → 新建 → 项目**。 2. 搜索模板 `CUDA`,选择 **NVIDIA → CUDA 11.x Runtime**(根据实际版本选择)。 3. 项目自动包含 CUDA 头文件和库依赖。 #### **方法 2:为现有 C++ 项目添加 CUDA 支持** 1. **添加 CUDA 编译规则**: - 右键项目 → **生成依赖项 → 生成自定义** → 勾选 **CUDA C/C++**。 ![生成自定义设置](https://docs.nvidia.com/cuda/_images/cuda_vs_custom_build_step.png) 2. **配置包含目录**: - 右键项目 → **属性 → VC++ 目录**: - **包含目录**:添加 `$(CUDA_PATH)\include` - **库目录**:添加 `$(CUDA_PATH)\lib\x64`(64位)或 `$(CUDA_PATH)\lib\Win32`(32位) 3. **设置附加依赖项**: - **链接器 → 输入 → 附加依赖项**: ```plaintext cudart.lib cublas.lib # 按需添加 cudnn.lib # 若使用 cuDNN ``` ![附加依赖项设置](https://docs.nvidia.com/cuda/_images/cuda_vs_linker_input.png) 4. **CUDA 编译器配置**: - 右键 `.cu` 文件 → **属性 → 常规**: - **项类型**:选择 `CUDA C/C++` - **CUDA C/C++ → Device** → `Code Generation`: - 设置计算能力(如 `compute_75,sm_75` 对应 Turing 架构) --- ### **3. 环境变量检查** - 确认系统环境变量包含: ```plaintext CUDA_PATH = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8 PATH 中追加:%CUDA_PATH%\bin;%CUDA_PATH%\libnvvp ``` --- ### **4. 验证 CUDA 集成** #### **测试代码** ```cpp #include <cuda_runtime.h> #include <stdio.h
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ang_go

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值