动归DP算法学习笔记 01背包 C++代码注解

本文是关于01背包问题的学习笔记,重点探讨动态规划的解决方案。通过C++代码详细注解,帮助理解动态规划在解决01背包问题中的应用。
摘要由CSDN通过智能技术生成

01背包问题是动态规划的经典问题, 也是基础问题。

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <stdarg.h>
#include <stddef.h>
#include "inputf.h"
int knapsack_2d(int v, int n, const int *c, const int *p)
{
	int *s = (int *)malloc(n * v * sizeof(int));
	#define f(a,b) (*(s + (a) * v + (b)))
	//int(*d)[8][100] = (int(*)[8][100])s;
	int nn = n, vv = v;
	while (--nn >= 0)
	{
		vv = v;
		while (--vv >= 0)
		{
			if (nn + 1 < n) {
				f(nn, vv) = f(nn + 1, vv);
				if (vv + 1 >= c[nn]) {
					int l = (vv + 1 > c[nn] ? f(nn + 1, (vv - c[nn])) : 0) + p[nn];
					if (l > f(nn, vv)) f(nn, vv) = l;
				}
			} else {
				f(nn, vv) = vv + 1 >= c[nn] ? p[nn] : 0;
			}
		}
	}
	v = f(0, v - 1); // 此处仅仅为了保存 v = f(0, v - 1) 的值
	free(s);
	return v;
}
/*
 * 01背包问题 总价值最大 一维解法
 * 返回 h = max{ f[1...n] }
 */
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值